Measurement of pulse pressure profiles in patients with trigeminal neuralgia

C L Turner, N Mendoza, R D Illingworth, P J Kirkpatrick

SHORT REPORT

Trigeminal neuralgia has an annual incidence of about 4.5 per 100 000. Although several causes of trigeminal neuralgia have been identified, its basic pathophysiology is still not well understood. Patients with trigeminal neuralgia may have arterial tortuosity, which could lead to increased arterial pulse pressure waveforms due to vascular rigidity. The most common cause of trigeminal neuralgia is focal compression of the trigeminal nerve by an aberrant loop of artery or vein, which is found in 80%–90% of cases. This anomaly has been reported to occur more frequently in patients with hypertension, and when coupled with the fact that trigeminal neuralgia is age related and rarely affects anyone under the age of 50, the importance of haemodynamic stress as a factor in trigeminal neuralgia is plausible.

The measurement of blood pressure does not take into account the potential importance of the pulse pressure profiles, which determine the arterial stresses within the arterial walls. Arterial stiffness is recognised as an important risk factor in vascular disease. Pulse wave analysis provides a means of quantification of the vascular compliance, particularly useful in general vascular risk assessment. Applanation tonometry is a quick and comparatively simple procedure for the non-invasive recording of arterial pulse profiles, providing information on wave reflection and producing an index of arterial stiffness. The method depends on the physical principle that the pressure within a viscoelastic cylinder can be estimated by partial compression of that structure permitting transmitted pressure changes to be recorded.

The pulse wave analysis technique uses applanation tonometry to record pressure waves from the peripheral circulation and then generate the corresponding central arterial waveform using transfer functions. The initial transmitted wave and the reflected waves form areas of impedance mismatch and are combined to produce a characteristic waveform. A measure of arterial stiffness, the augmentation index (AIx) can subsequently be determined. This system has been validated for accuracy against the gold standard, as determined by intraarterial catheterisation in the ascending aorta.

Arterial pulse pressure waveforms in patients who have suffered subarachnoid haemorrhage from an intracranial aneurysm have an altered pulse profile compared with matched controls. Pulse pressures in such patients tend to be higher in the left carotid artery than the right. Patients with trigeminal neuralgia have a similar age profile to those with aneurysmal subarachnoid haemorrhage and also a female predominance. In view of these similarities we have examined arterial wave reflections and the pulse profile of the systemic circulation of patients suffering from trigeminal neuralgia to explore the possibility that haemodynamic stress factors may be of importance in trigeminal neuralgia.

METHOD

The local research ethics committees gave approval for this study (LREC 01/185 and RREC 2409). Each patient gave written informed consent.

Patient population

Thirty two patients with trigeminal neuralgia (16 male and 16 female) and 100 controls (50 male and 50 female) were recruited from the Neurosurgical Departments of Charing Cross Hospital, London and Addenbrooke’s Hospital, Cambridge. Mean age was 61 years (range 38–86).

Controls were selected from two sources; volunteers composed of staff and visitors to the hospital, and a random selection of patients in the region.

Of the 32 patients two with trigeminal neuralgia, six were currently taking carbamazepine, one was taking gabapentin, and seven were taking both. Eleven patients had been treated by microvascular decompression, mean (SD) time from surgery 17 (24) months (range 3–86 months). Nine suffered from symptoms on left and 23 were right sided symptoms.

Instrumentation

A blood pressure analysis system (SphygmoCor, PWV Medical, Sydney, Australia) was used to record the arterial pulse profiles. This comprises of a PWV (Millar Instruments, Houston, TX) pencil probe tonometer with high fidelity micro manometer.

Resting blood pressure was obtained for calibration by using a conventional sphygmomanometer. The monitoring procedure has been previously described. A pressure waveform was obtained after palpation of the carotid pulse and by
Positioning the probe, using gentle pressure over the pulse, to flatten but not occlude the artery. The resulting pressure waveform is transmitted on line to a portable computer to assess waveform analysis.

Data analysis

Data expressed as the means (SD). We used a multivariate analysis of variance, to compare parameters, with AIX as the dependent variable and risk factors as covariates. A paired Student t test assessed within patient differences of the affected side versus the contralateral side with respect to AIX.

RESULTS

No significant differences were seen in heart rate (trigeminal neuralgia group 70 (12) beat/min, control group 69 (11) beat/min, p=0.53), mean blood pressure (trigeminal neuralgia group 113 (15) mm Hg, control group 108 (15) mm Hg, p=0.13) or pulse pressure (trigeminal neuralgia group 56 (18) mm Hg, control group 56 (19) mm Hg, p=0.94). No significance was reached for either height (trigeminal neuralgia group 1.7 (0.1) m, control group 1.7 (0.1) m, p=0.9) or weight (trigeminal neuralgia group 74 (15) kg, control group 75 (15) kg, p=0.64). No patient in either group was reported to be suffering from diabetes mellitus.

Multivariate analysis showed no overall significant difference in the AIX between the subjects with trigeminal neuralgia and the controls (Wilks’ λ test =0.95, p=0.32). Taking into account the risk factors known to potentially increase AIX, no significant asymmetry in the carotid artery augmentation indices to support this theory. Nevertheless, although the study did not identify any significant differences in the pulse pressure profiles, this does not exclude the possibility that vasoactive drugs could be considered for medically refractive trigeminal neuralgia, where vascular disease is evident.

...


Measurement of pulse pressure profiles in patients with trigeminal neuralgia

C L Turner, N Mendoza, R D Illingworth and P J Kirkpatrick

J Neurol Neurosurg Psychiatry 2003 74: 533-535
doi: 10.1136/jnnp.74.4.533

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/4/533

These include:

References
This article cites 10 articles, 5 of which you can access for free at:
http://jnnp.bmj.com/content/74/4/533#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Hypertension (380)
- Cranial nerves (529)
- Neuromuscular disease (1311)
- Pain (neurology) (763)
- Peripheral nerve disease (631)
- Ophthalmology (842)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/