Botulinum toxin type B in blepharospasm and hemifacial spasm

Botulinum neurotoxins (BTXs) inhibit the presynaptic release of acetylcholine causing a clinical depression that results in sustained muscle weakness and have been used in the past 20 years to induce selective blocking of hyperactive striatal (and smooth) muscles.

All the different seven serotypes of BTXs have intrinsic properties and a different mechanism of action (block of the neuroexocytosis machinery inside the end plate, responsibility for the release of acetylcholine into the neuromuscular junction), acting on different targets. The two commercially available serotypes, botulinum toxin type A and botulinum toxin type B (abbreviated BTX-A and BTX-B, respectively) are reported to act as zinc dependent endopeptidases on different intraneuronal target proteins.

The clinical value of BTX-A has been recognised for a long time and is widely demonstrated by hundreds of clinical reports. More recently a clinical usefulness of BTX-B has been reported. Two controlled clinical trials have demonstrated that local intramuscular injections of BTX-B are effective in the treatment of cervical dystonia in patients with BLS, as well in patients with BTX-A resistant disease (secondary non-responders). BTX-B was found to be effective in both studies, with a significant improvement observed in all the parameters investigated (severity, disability, and pain); action was found to last as long as 16 weeks. Based on these favourable results, we investigated BTX-B treatment in blepharospasm (BLS), another common form of focal dystonia, and in hemifacial spasm (HFS). Indeed, despite BTX-A being an efficacious treatment for these conditions, a percentage of patients still shows a suboptimal response, particularly in long term treatments. They could, therefore, benefit from the availability of another botulinum toxin serotype.

Blepharospasm

We studied 13 subjects (10 women and 3 men; mean (SD) age at onset 51.5 (15.0) years; mean disease duration 9.1 (8.1) years) with BLS. BLS was diagnosed as idiopathic focal dystonia in 12 patients, and as tardive dystonia in one case. All patients had received BTX-A before, with a moderate to good response. Patients were excluded if they had received a BTX-A injection in the past three months for their BLS. After an informed consent was obtained, four pretarsal injections were placed around each eye; the fixed total dose for each treatment was 2500 units (0.6 ml of a solution obtained by adding 0.3 ml of saline to 0.5 ml of the commercially available BTX-B solution). Before each treatment, patients were assessed with an objective rating scale for dystonia (Burke-Fahn-Marsden scale, severity factors, items for BLS and mouth aver-

Table 1 Response to BTX-B injections

<table>
<thead>
<tr>
<th></th>
<th>BLS</th>
<th>HFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency to response (days)</td>
<td>3.0 (2.5)</td>
<td>3.7 (6.0)</td>
</tr>
<tr>
<td>Duration of response (days)</td>
<td>63.0 (17.5)</td>
<td>46.5 (22.1)</td>
</tr>
<tr>
<td>Objective rating scale (points)</td>
<td>1.9 (0.4)</td>
<td>1.1 (0.6)*</td>
</tr>
<tr>
<td>Subjective visual analogue scale (%)</td>
<td>35.1 (28.5)</td>
<td>59.8 (26.9)</td>
</tr>
</tbody>
</table>

Results are expressed as mean (SD). *Student’s t test between before and after injection: p<0.001.

and the moment when that any benefit has completely worn off, both as reported by the patient. Each injection was given as a single treatment. Additionally, a telephone call was made to the patient each week to assess safety and duration of the effect.

Results of the trial are reported in table 1. Overall five patients rated the efficacy of BTX-B as superior to BTX-A and preferred to continue treatment with BTX-B. The drug was generally well tolerated, with the most common adverse effect of BTX-B being pain during the injection, which was reported by 11 of 13 of the patients. Other common side effects of BTX-A treatment, such as ptosis and epiphora, were mild and transient. One patient experienced an anaphylactic reaction, consisting of Quincke’s oedema, from day two after the injection, though this resolved after treatment with corticosteroids.

Hemifacial spasm

We studied 11 subjects (six men and five women; mean age at onset 64.9 (10.4) years; mean disease duration 5.4 (3.9) years) with HFS. All patients had received BTX-A before, with a moderate to good response. Patients were excluded if they had received a BTX-A injection in the past three months for their HFS. After an informed consent was obtained, four pretarsal injections were placed around each eye, and two around the mouth; the fixed total dose of BTX-B for each treatment was 937.5 units. This was obtained by taking 0.3 ml of the previously described solution. Before each treatment, patients were assessed with an objective rating scale for dystonia (Burke-Fahn-Marsden scale, severity factors, items for BLS and mouth averaged; this scale was used in the absence of validated rating scales for HFS); efficacy was assessed at the time of the peak effect with the same objective rating scale and the subjective visual analogue scale reported above. Each patient received a single treatment. Latency and duration of the effect were assessed as above.

Results of the trial are reported in table 1. Only two patients rated the efficacy of BTX-B as superior to BTX-A and preferred to continue treatment with BTX-B. The drug was well tolerated, with the most common adverse effect being burning pain during the injection, which was reported by 7 of 11 patients. Other common side effects of BTX-A treatment were negligible.

Comment

This open pilot trial, which is the first to use BTX-B in a neurological condition other than cervical dystonia, suggests that BTX-B is an effective and safe treatment for both BLS and HFS. The time course and magnitude of the improvement observed in our study are similar to those reported in trials with BTX-A for the same conditions, while the duration of the effect appears shorter as the mean duration of effect with BTX-A in these neurological conditions is 12–16 weeks. The only peculiar side effect was local pain during the injection, which has not been reported in previous trials with BTX-B. This event might be related to the fact that BTX-B is available in a liquid preparation, which has different biochemical properties than the reconstituted solution of BTX-A. The severe, adverse reaction reported in a single patient with BLS has not been described in previous trials using this compound for cervical dystonia and has rarely been reported in conjunction with BTX-A use; it should, however, not discourage the planning of further dose ranging studies of BTX-B and studies on larger series of patients designed to compare the effect of BTX-B with placebo and BTX-A in different neurological disorders.

Competing interests: CC has been reimbursed by Elan, Allergan and Ipsen (manufacturers of different botulinum neurotoxins) for attending several conferences. MFC has been reimbursed by Elan for attend a conference. ARB has been reimbursed by Allergan and Ipsen for attending several conferences.

C Colosimo, M Chianese, M Giovannelli
Dipartimento di Scienze Neurologiche, Università La Sapienza, Rome, Italy
M F Contarino, A R Bentivoglio
Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
Correspondence to: Dr. C. Colosimo, Dipartimento di Scienze Neurologiche, Università La Sapienza, viale dell’Università 30, 100185 Rome, Italy; carlo.colosimo@uniroma1.it

References

Persistent bitter taste as an initial symptom of amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is characterised by progressive degeneration of upper and lower motor neurons. Clinical symptoms involve weakness, dysphagia, dysarthria,
and the vague nerve innervate the posterior third and the esophagus. It has been shown experimentally and clinically that anaesthesia of the chorda tympani nerve branch results in intensified perception of bitter taste from the posterior tongue, suggesting that the pathway of the chorda tympani normally inhibits the glossopharyngeal and vagus nerve input.1 In fact, spontaneous bitter taste dysgeusia (phantogeusia) similar to that perceived by our patients was observed in the posterior tongue after anaesthesia of the chorda tympani.2 Hence it may be speculated that mild sensory neuropathy of the chorda tympani branches may be responsible for our findings. Sensory signs have indeed been described in ALS. However, if at all, they develop relatively late in the disease.3 Furthermore, the spatial gustatory function test did not reveal hypogeusia confined to a localised region of the tongue in our patients, although the sensitivity of this test for mild gustatory disturbances is probably low.4 Unfortunately, neither patient was available for electro-physiological testing to further clarify our hypothesis.

Alternatively, the dysgeusia may be of central nervous origin. Both patients presented with bilateral facial sensory parhesis reflecting a prominent bulbar involvement in the disease. Thus it can be suggested that bilateral degeneration of the brain stem solitary tract nucleus may be responsible for the dysgeusia in our patients. Interestingly, dysfunction of the solitary tract nucleus—which in part is also regulated by the solitary tract nucleus—has been described in ALS,5 supporting the view that this disease may be a multisystem disorder. Thus dysgeusia may indicate brain stem involvement in the disease. As a bulbar onset of ALS is an important predictor of the disease course,6 our finding may also be of prognostic value. We cannot provide a definite neuroanatomical basis for our observation, but we believe that future studies may be able to address these issues.

G C Petzold, K M Einhäupl, J M Valdueza
Department of Neurology, Charité Hospital, Humboldt University, Schumannstr 20/21, 10098 Berlin, Germany
Competing interests: none declared
Correspondence to: Dr Petzold; gabor.petzold@charite.de

References
1 Pearn J. Neurology of ciguatera. J Neurol Neurosurg Psychiatry 2001; 70: 48–4

Schizophrenia and episodic ataxia type 2
The frequent co-occurrence of degenerative cerebellar pathology and schizophrenia, as well as the recently reported increased association rate between autosomal dominant ataxias and major psychosis, strongly suggests the involvement of the cerebellum in the pathophysiology of schizophrenia.1 The analysis of associations between psychosis and neurodegenerative diseases may improve our understanding of the pathophysiology of schizophrenia and facilitate the search for susceptibility genes for this disorder.2

To our best knowledge, there have been no previous reports about an association between schizophrenia and the periodic ataxiogenic dominant ataxias, such as episodic ataxia type 1 and type 2 (EA1 and EA2). We present a case of a young man who has been diagnosed with paranoid schizophrenia (ICD-10: F20.0) and episodic ataxia type 2.

Case study
The patient, a man aged 27 years, was first admitted to our hospital with psychotic symptoms in June 1995. He presented with paranoid delusions and delusions of reference, audible hallucinations (commenting voices), formal thought disorder, and behaviour disorganisation, as well as negative symptoms such as blunted affect, poor rapport, and lack of spontaneous speech. He was diagnosed as having paranoid schizophrenia (ICD-10: F20.0) and showed a PANSS (positive and negative symptom scale) total score of 117 (fig 1).

The patient was initially treated with risperidone (6 mg/d) which led to a slight improvement in his psychotic symptoms. After discharge from our hospital in September 1995 he regularly attended our outpatient clinic. Despite treatment with risperidone and later with haloperidol decanoate (20 mg/2 weeks), he continued to have chronic psychotic symptoms, which persisted until April 2001. At this admission he was suffering from severe psychosis (paranoid delusions, audible hallucinations, formal thought disorder, and behaviour disorganisation) and negative symptoms (fig 1). Antipsychotic treatment with quetiapine (800 mg/d; 4 weeks) and subsequently with amisulpride (600 mg/d; 4 weeks) did not lead to any improvement in the psychosis. At this time, a neurological investigation showed gazed evoked nystagmus and upward gaze palsy, though attacks of ataxia had neither been reported by the patient nor noticed by the nurses.

Because of persistence of the psychotic symptoms, we began treatment with clobazam (300 mg/d) and subsequently with valproate. Despite deterioration in psychosis over the next four weeks despite sufficient serum levels of clobazam, at that time the first severe ataxia attacks appeared. They were manifested by gait ataxia, dysarthria, and slight intention tremor of the upper extremities and persisted for at least several hours. After other causes of cerebellar dysfunction—such as inflammatory, toxic, and vascular disorders—had been excluded, the patient was diagnosed as having episodic ataxia type 2 because he met the following clinical diagnostic criteria: duration of attacks (hours to days), gait and stance ataxia, interictal absence of most symptoms (except oculomotor deficits). Consequently, we began treatment with acetazolamide (200 mg twice daily) and switched the antipsychotic medication from amisulpride to pimozide (400 mg/d). This led to both a complete elimination of ataxia episodes and a gradual amelioration of the psychotic symptoms. At the time of discharge six weeks later, the total PANSS score was 90. At all subsequent follow up investigations undertaken monthly until December 2002 the psychotic symptoms remained unchanged (fig 1) and there was no recurrence of the ataxia attacks.
neurodegenerative disorders may predispose a response to treatment with acetazolamide.

Cessation of ataxia episodes as a result of these mechanisms points to a possible role of ion channel dysfunction in the pathophysiology of schizophrenia."

Ataxia was observed in the four extremities. The deep tendon reflexes were absent in the four extremities. The strength was preserved, deep tendon reflexes were absent in the four extremities. The light reflex was absent on both sides. Mydriasis bilaterally (right 6 mm, left 6.5 mm) and the light reflex was absent on both sides. The patient had a 10 year history of hypertension. Four weeks before admission, he had common-cold-like symptoms. Ten days before admission, he developed difficulties with walking and speaking. The next day he was unable to walk or lift his eyelids. He was admitted to another hospital, where he was diagnosed as having a brain stem infarct. During admission, he developed tightness in the chest for three to four days which improved spontaneously. Because of exacerbation of his neurological symptoms, he was transferred to our hospital.

On initial physical examination, his blood pressure was 158/106 mm Hg in regular rhythm. He was afibrile and had no respiratory difficulty. On neurological examination, he was fully orientated. His pupils were slightly mydriatic bilaterally (right 6 mm, left 6.5 mm) and the light reflex was absent on both sides. Complete ophthalmoplegia and peripheral facial palsy were observed bilaterally. He had severe dysarthria with restricted movements of the soft palate and tongue. Although muscle strength was preserved, deep tendon reflexes were absent in the four extremities. The plantar responses were flexor. There was no definite involvement of sensory function. Ataxia was observed in the four extremities.

Routine laboratory tests were normal except for a slightly increased white blood cell count. Cerebrospinal fluid obtained on the first hospital day showed a normal pressure with an increased protein level of 82 mg/dl. Aetiological investigations, including anti-GM1, anti-GM2, anti-GD1a, anti-GD1b, anti-GT1a, anti-GT1b, anti-GQ1b, anti-QP1, anti-QP2, and anti-QP3, were all negative. Results of thyroid function tests, angiotensin converting enzyme level, c-ANCA, p-ANCA, anti-acetylcholine receptor antibody, serum electroimmunophoresis, and polymerase chain reaction analysis for CSF tuberculosis and herpes simplex virus were all normal. Serum titres of influenza A and B, measles, mumps, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus, herpes simplex virus, rubella, and mycoplasma were all normal. Cranial magnetic resonance (MR) imaging and MR angiography showed no abnormal lesions. EEG findings were normal. Nerve conduction studies showed decreased F wave persistence in the arms. Motor and sensory nerve conduction velocities were well maintained.

On the basis of the neurological findings, we established a diagnosis of Miller Fisher syndrome. The patient was treated with a 12 litre plasma exchange over six days, followed by high dose intravenous gamma globulin (400 mg/kg/day for five continuous days). There was no chest pain during admission to our hospital; however, an ECG on the first hospital day showed sinus tachycardia with slightly elevated ST segments in leads V3–V5. T waves were inverted in leads I, II, AVL, and V3–6 on the fifth day. These findings, in...
conjunction with the previous episode of chest tightness, led us to suspect acute coronary syndrome, and we undertook coronary angiography. Although the coronary arteries were free of any lesions, a left ventriculogram showed severe hypokinesia in the anterolateral, apical, and diaphragmatic segments, with an ejection fraction of 34%. Provocative vasospasm was not confirmed. Maximum creatine kinase MB release was 8.0 ng/ml (normal 0-5.0 ng/ml). A left ventriculogram on the 13th hospital day showed an improvement in the hypokinesia, with an ejection fraction of 44%. There were no specific abnormal findings on myocardial biopsy. Serum noradrenaline (norepinephrine) concentrations were increased to 810 ng/l, 1160 ng/l, and 549 ng/l on the seventh, 14th, and 78th day, respectively (normal 90-420 ng/l). Thallium-201 scintigraphy on the ninth day showed only mild hypoperfusion in the lateral wall; however, 131-I-metaiodobenzylguanidine (MIBG) scintigraphy done on the 12th day revealed a decrease in uptake in the anterior, inferior, and lateral walls [A]. The patient had recovered by the 70th day [B].

Comment

In this case, serum anti-GQ1b antibody was negative despite its common association with Miller Fisher syndrome. However, we feel the triad of ataxia, areflexia, and ophthalmoplegia in association with dissociation of protein and cytological findings in the CSF and the absence of specific findings on cranial MR imaging and MR angiography is sufficient to justify our diagnosis of the Miller Fisher syndrome. Autonomic dysfunctions consisting of sinus tachycardia, increased serum noradrenalin, and decreased MIBG uptake were noted in this case. As these dysfunctions were reversible and paralleled the severity of the Miller Fisher syndrome, they probably have the same aetiology. Because 131-I-metaiodobenzylguanidine is a physiological analogue of noradrenaline, and is actively transported into the noradrenaline granules of sympathetic nerve terminals by uptake-1, decreased MIBG uptake in the early phase suggested the involvement of cardiac autonomic nerves. Normal findings on coronary angiography, as well as unremarkable findings on thallium-201 scintigraphy, ruled out ischaemic cardiomyopathy. Thus autonomic dysfunction in the cardiovascular system was considered to have been an important factor in the present case.

Takotsubo shaped cardiomyopathy is a unique heart syndrome characterised by reversible left ventricular apical wall motion abnormalities with chest symptoms, ECG changes, and minimal myocardial enzymatic release mimicking acute myocardial infarction without coronary stenosis. The syndrome is named “takotsubo shaped” cardiomyopathy as it has often been reported in Japan and the unique configuration of left ventriculogram resembles a takotsubo, a Japanese word describing an octopus pot. The left ventricular wall motion abnormality observed in the present case can be included in the takotsubo shaped cardiomyopathy category because of its reversible course and other clinical characteristics. Although the detailed aetiology of this syndrome remains unclear, enhanced sympathetic activity or vasospasm are considered to play a role in the development of contraction abnormalities. Three cases of Guillain-Barré syndrome with reversible left ventricular dysfunction have previously been reported. In all these cases, the apical regions were mainly involved. In two of the three cases, MIBG scintigraphy was done and showed decreased uptake around the apex in both cases.

To our knowledge, this is the first report of a case of Miller Fisher syndrome with reversible cardiomyopathy caused by impairment of the autonomic nervous system. This cardiac syndrome may easily be missed because of its transient nature, with minimal abnormalities on routine laboratory findings. However, careful cardiac examination including ECG, left ventriculography, and MIBG scintigraphy may lead to the identification of further cases of Miller Fisher syndrome showing this cardiac complication.

References

No evidence of type 1 or type 3 hypersensitivity mechanism in amoxicillin/clavulanic acid induced aseptic meningitis

Drug induced aseptic meningitis has been reported in response to various agents, in particular non-steroidal anti-inflammatory drugs, intravenous immunoglobulins, anti-CD3 monoclonal antibody (OKT3), and antibiotics. Hypersensitivity mechanisms (especially type 1 and type 3) have been invoked as the cause by many investigators. This hypothesis is supported by the detection of immune complexes in the serum or cerebrospinal fluid (CSF) of some patients.

To our knowledge, only two cases of aseptic meningitis induced by amoxicillin with or without clavulanic acid have been reported. We report a third case of probable amoxicillin induced aseptic meningitis where we performed laboratory studies for type 1 or type 3 hypersensitivity mechanisms.

Case report

A 62 year old man presented to our hospital because of fever (up to 40°C) and severe headache for four days. Both had begun approximately six hours after the intake of one tablet of 500 mg amoxicillin plus 125 mg clavulanic acid (Augmentin®, SmithKline Beecham) as antibiotic prophylaxis before a planned dental surgical procedure. He had discontinued the antibiotic after two tablets and cancelled the appointment with the dentist. Five weeks before, he had already had to cancel the planned operation, because he had exactly the same (but more severe) signs and symptoms, also of approximately six hours after the intake of one tablet of amoxicillin/clavulanic acid. Following discontinuation of the prophylactic antibiotic (after two tablets), the fever and headache had subsided over the course of three weeks without any treatment.
Tests were not performed during that episode. He could not remember having taken amoxicillin/clavulanic acid before that first occasion. He did not report any accompanying “allergic” signs, such as facial oedema, conjunctivitis, or rash during either of the two episodes, and he had no previous history of allergy or connective tissue disorder. His neurological status was unremarkable, and in particular there was no neck stiffness. His physical status was also normal except for a body temperature of 38.2°C. Cranial computed tomography revealed no abnormalities. CSF examination showed the following results: leucocyte count 54 cells/\mu l (82% lymphocytes, 12% monocytes, 4% lymphoid cells, 2% granulocytes); glucose 62 mg/dl (serum 98 mg/dl); protein 94 mg/dl; $Q_{\text{Alb}} 13.4$ (1000 × CSF albumin/serum albumin, normal < 7.4); IgG index 9.38 (1000 × CSF IgG/ serum IgG); oligoclonal bands negative. Bacterial and fungal cultures from CSF were negative. Blood analyses were also normal except for a slightly raised C reactive protein (1.1 mg/dl, normal $< 0.5 \text{ mg/dl}$). Additional investigations did not support an underlying type 1 or type 3 hypersensitivity mechanism, as no specific IgE to amoxicillin (< 0.35 IU/ml) or immune complexes interacting with $C_{1q} (1.4 \text{ EU/ml})$ were detected in his serum or CSF. Without further treatment, he recovered completely within one week.

Comment

On the basis of the history and findings (two identical episodes of high fever and headache shortly after intake of the prophylactic antibiotic, and sterile CSF pleocytosis at least during the second episode), we diagnosed probable amoxicillin/clavulanic acid induced aspecific meningitis. However, we could not find any evidence suggesting an underlying type 1 or type 3 hypersensitivity reaction. Further studies are therefore warranted.

References

Another adverse effect of aspirin: bilateral vestibulopathy

Widely used for more than 2000 years, salicylic acid has numerous beneficial effects. It may also lead to several adverse reactions, affecting for instance the auditory system. Persistent dysfunction of the vestibular system, however, has not yet been described. We report a patient who took $5-6 \text{ g}$ aspirin a day for three days for arthralgia. Subsequently he felt unsteady and had oscillopsia while walking, but no tinnitus or hypacusis. Caloric irrigation revealed a bilateral vestibulopathy which was most probably caused by the direct effect of aspirin on the vestibular hair cells.

Case report

A 61 year old teacher took $5-6 \text{ g}$ aspirin a day for three days to treat his arthralgia, but no other drugs during this period. Two or three days later he felt unsteady while walking. This problem was worse on uneven ground and in the dark. During head movements and while walking he perceived apparent motion of the visual scene and the oscillopsia was prominent. Hearing was normal and he did not complain of tinnitus. He had not had vertigo or hearing problems previously, and his family history was also unremarkable. Though he had had monoclonal IgG lambda gammopathy for five years, a bone marrow biopsy proved normal, and thus his condition had been diagnosed as “monoclonal gammopathy of unknown significance.”

As all his symptoms persisted, he came to our dizziness unit nine months later. The Halmagyi–Curthoys test (head impulse test to evaluate the function of the semicircular canals) was pathological and revealed a dynamic deficit of the horizontal semicircular canal bilaterally. Romberg testing showed increased sway which worsened when the eyes were closed. His gait was broad based and also worsened with the eyes closed. However, his hearing was normal, and he had no cerebellar signs.

Electroystagmography revealed a significant bilateral caloric hyporesponsiveness (peak slow- phase velocity of the caloric nystagmus during irrigation with 44°C warm water: right ear, 2°; left ear, 5°; and with 30°C cold water: right ear, 5°; left ear, 3°). Further, the pre- and postrotatory nystagmus lasted less than three seconds and showed a gain of < 0.2. Hearing tests, including an audiogram, were normal. Blood tests for other possible causes of bilateral vestibulopathy (antibodies against inner ear structures, antinuclear antibodies, anticytoplasmic antibodies, rheumatic factor, vitamin B-12, folic acid, and so on), as well as high resolution magnetic resonance imaging of the cerebello-pontine angle and labyrinth were normal. As mentioned above, testing of the serum revealed the presence of monoclonal IgG lambda gammopathy (total protein 8.7 g/dl (normal range 6.0 to 8.0 g/dl); IgG concentra-
tion 28.2 g/dl (normal range 7.0 to 16.0 g/dl)).

Comment

Pathophysiologically, the patient’s complaints are fully explained by bilateral vestibulopathy: the oscillia is caused by a defect of the vestibulo-ocular reflex, and the unsteadiness by a defect of the vestibulospinal reflexes, especially in darkness when vision cannot substitute for absent vestibular function. The time course of symptom development following the ingestion of a high dose of aspirin provides strong evidence that the isolated and persistent bilateral vestibulopathy was caused by the drug. Although aspirin induced bilateral vestibulopathy has been reported before, it is likely that other patients taking aspirin have developed it, as bilateral vestibulopathy is often overlooked.

For more than 150 years it has been known that high doses of salicylates can cause tinnitus, loss of absolute acoustic sensitivity, and alterations of perceived sounds, which may develop in the initial days of treatment. It is also known that the susceptibility of individual subjects to salicylate induced inner ear toxicity varies greatly, but why this is so is unclear. Various attempts have been made to explain the toxic effects of salicylic acid. Otoacoustic emissions have been used to show that salicylates cause changes in the mechanosensory functioning of the cochlea; in particular, spontaneous emissions are decreased. Histopathological animal studies have revealed significant changes of only the outer hair cell lateral membrane. In vitro experiments have shown that the fast motile responses of outer hair cells are reduced. As regards the underlying mechanisms, aspirin seems to directly inhibit the mecanoelectrical transduction process by partitioning the salicylate molecules in the membrane of hair cells. These latter findings suggest to us that this newly described adverse reaction to aspirin may be related to our patient’s monoclonal IgG lambda gammopathy. The raised IgG concentration could have promoted such partitioning of the molecules in the hair cell membrane, assuming they are able to enter the endolymphatic space. However, this does not explain the isolated impairment of the vestibular function.

From a clinical point of view, it is relevant to consider this additional adverse effect of aspirin, especially as it is unpredictable owing to varying individual susceptibilities. If a patient has taken higher dosages of aspirin and complains of dizziness, his vestibular function should be tested for bilateral vestibulopathy.
Persistent bitter taste as an initial symptom of amyotrophic lateral sclerosis

G C Petzold, K M Eihäupl and J M Valdueza

J Neurol Neurosurg Psychiatry 2003 74: 687-688
doi: 10.1136/jnnp.74.5.687-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/5/687.2

These include:

References
This article cites 6 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/74/5/687.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/