Normal jugular bulb oxygen saturation

A Chieregato, F Calzolari, G Trasforini, L Targa, N Latronico

J Neurol Neurosurg Psychiatry 2003;74:784–786

Background: Normal values of the jugular bulb oxygen saturation were obtained in 1942 and in 1963. Correct catheter positioning was not confirmed radiologically.

Objectives: To replicate the measurements during angiographic catheterisation of the jugular bulb.

Methods: Oxygen saturation in the jugular bulb (SjO2), inferior petrosal sinuses (SipsO2), and internal jugular vein was bilaterally measured in 12 patients with Cushing’s syndrome undergoing selective bilateral catheterisation of the inferior petrosal sinus. In addition, data from the two old series were reanalysed for comparison.

Results: SjO2 values (44.7%) were significantly lower than in the two old series, particularly concerning the normal lower limit (54.6% and 55.0% respectively). Comparative analysis suggests that contamination with the extracerebral blood of the facial veins and inferior petrosal sinuses was responsible for falsely high SjO2 values in the two old series.

Conclusions: The normal lower SjO2 limit is lower than previously recognised. This may have practical implications for treating severe head trauma patients.

Materials and Methods

The study was approved by the local review board, and written informed consent was obtained by the patients. The study was carried out on 12 patients (nine females; median age 39 years, range 25–72) with Cushing’s syndrome, whose aetiology had to be defined. Selective bilateral venous sampling in the inferior petrosal sinus was necessary to distinguish those with hyperventilation (more than 25 breaths per minute for at least one minute) during the procedure.

Statistical analysis

SjO2 values are presented as mean, upper (mean plus 2 standard deviations (SD)), and lower (mean minus 2 SD) limit. Precision of each point estimate was evaluated by 95% confidence intervals (95% CI). Comparison of the venous oxygen saturation in the jugular bulbs, inferior petrosal sinuses, and midlevel jugular veins was done using analysis of variance (ANOVA).

Abbreviations: ACTH, adrenocorticotropic hormone; ANOVA, analysis of variance; CBF, cerebral blood flow; CMRO2, cerebral metabolic rate of oxygen; CNS, central nervous system; CRH, corticotrophin releasing hormone; SjO2, jugular bulb oxygen saturation; SipsO2, inferior petrosal sinus oxygen saturation.
Differences between right and left SjO₂ in simultaneous samples were not statistically significant, neither in the present series (t = 0.1978, two tailed p = 0.8481) nor in the Gibbs series (t = -0.1464, two tailed p = 0.8846); however, limits of agreement were wider in the latter. Results, expressed as mean difference (95% CI), and upper (95% CI) and lower (95% CI) limits of agreement were as follows: present study: 0.2% (−1.2 to 1.7); 3.7% (1.2 to 6.3); −3.3% (−5.8 to −0.7); Gibbs: −0.1% (−1.3 to 1.1); 6.5% (4.4 to 8.6); −6.7% (−8.8 to −4.6).

DISCUSSION

We found significantly lower SjO₂ values in this series (44.7%) than reported in two old series (54.6%, 55.0%), the only ones in which SjO₂ was measured in normal volunteers. The difference was not accounted for by the fact that patients in the present series had Cushing’s syndrome. In fact, all patients had a syndrome of recent onset, whose pathogenesis, whether due to microadenoma of the pituitary or paragangliomas, had yet to be defined. In addition, patients with severe unstable hypertension, in whom uncoupling of CBF and CMRO₂ may occur, were excluded.

Three facts are relevant to explain our results. First, we used a digital angiography system and vascular catheters were exactly positioned in the dome of the jugular bulb. In the Gibbs and Datsur series the catheter positioning in the jugular bulb was blind, and cervical x ray confirmation of the final catheter position was not performed. Therefore, extracerebral blood contamination from the facial veins, as shown in this study, from the inferior petrosal sinuses may have occurred in some patients. Our results support this hypothesis showing that the SjO₂ values in the old series were intermediate between SjO₂ and SipsO₂–SmidjO₂ (extracerebral) in the present series. Second, blood samples in our study were withdrawn slowly, a factor that has shown to avoid extracerebral blood contamination, provided that the catheter is correctly positioned in the jugular bulb. Third, we measured haemoglobin oxygen saturation by mean of a co-oximeter, the reference method based on three wavelength spectrophotometry, while Datsur et al used a two wavelength spectrophotometric method, and Gibbs et al the Van Slyke manometric method. The two latter methods overestimate oxygen saturation compared with the co-oximeter, particularly for the lower range of oxygen saturation, as is the case in venous samples.

Normal SjO₂ limit lower than previously recognised: does it matter?

SjO₂ values below the lower normal limit have been defined as jugular desaturation—that is, situations of critical inadequacy of CBF to CMRO₂, “from norms defined by Gibbs and coworkers”, and have been proven in a single study to independently affect the outcome of severe head trauma. However, the methods on how to summarise insult data such as jugular desaturation have only recently been defined, while in previous studies the jugular desaturation was simply dichotomised as present or absent, based on Gibbs’ data. Therefore, a new limit could modify the result. More

Table 1 Oxygen saturation values in the jugular bulb (SjO2)

<table>
<thead>
<tr>
<th>SjO₂</th>
<th>Mean (95% CI)</th>
<th>Upper limit (95% CI)</th>
<th>Lower limit (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present series</td>
<td>57.1 [52.3 to 61.6]</td>
<td>69.5 [61.2 to 77.7]</td>
<td>44.7 [36.5 to 53.0]</td>
</tr>
<tr>
<td>Gibbs (1942)</td>
<td>62.0 [61.0 to 63.1]</td>
<td>69.4 [67.6 to 71.2]</td>
<td>54.6 [52.8 to 56.5]</td>
</tr>
<tr>
<td>Datsur (1963)</td>
<td>64.3 [62.4 to 66.2]</td>
<td>73.7 [70.4 to 76.9]</td>
<td>55.0 [51.7 to 58.2]</td>
</tr>
</tbody>
</table>
importantly, it is suggested that jugular desaturations, variously defined as SjO2 less than 50% or 54%,1 are treated aggressively, although benefits are unproven. A new normal limit further weakens the legitimacy of such treatments.

This study included a small sample of patients and therefore conclusions should be taken cautiously. Due to the lack of invasiveness that can be attributed to the method itself, our results can be easily replicated. If the normal lower SjO2 limit is confirmed to be as low as 46%, redefinition of “normality” applied to SjO2 may have diagnostic, prognostic, and therapeutic implications.

Contributors

Authors’ affiliations

A Chieregato, L Targa, Department of Anesthesiology-Intensive Care, Section of Neurocritical Care, Ospedale Civile M. Bufalini, Cesena, Italy

F Calzolari, Department of Neuroradiology, Arcispedale S. Anna, Ferrara, Italy

G Trasforini, Department of Clinical Endocrinology, University of Ferrara, Italy

N Lotronico, Institute of Anesthesiology-Intensive Care, University of Brescia, Italy

Competing interests: none declared

REFERENCES

Carpenter ranked Ferrier’s cerebral localisation among the greatest advances in the physiology of the nervous system made in the past 50 years.¹ It formed a direct link between Jackson and Sherrington, with both of whom he had worked.

Born in Aberdeen, Ferrier studied there under Alexander Bain, on whose advice in 1864 he visited Heidelberg, to study psychology with Helmholtz and Wundt. Wundt had just (1862) completed the *Beiträge zur Theorie der Sinneseinnehmung* that contained the first statement of his “physiological psychology”. Ferrier completed his medical training at Edinburgh where Thomas Laycock,² inclined him towards neurology.

He worked in London from 1880, and was appointed Professor of Neuropsychology, King’s College Hospital, in 1889. But his research began earlier at The West Riding Lunatic Asylum, Wakefield. There he showed that stimulation of the cerebral cortex could produce movements and fits, and that cerebral functions were localised in definable discrete areas.

Before him, in 1886, Friedrich Albert Lange (1828–75) had distinguished between localisation of function and localisation of symptoms. Broca, Bouillaud,³ and others had tried to relate behaviour, language, and disease to different areas of the brain, but Franz Joseph Gall’s (1758–1828) phrenology was still accepted by many.⁴ Influenced by Bain and Spencer, Ferrier⁵ tested Hughlings Jackson’s notion that motor and sensory functions must be represented in an organised fashion in the cortex. Gustav Theodor Fritsch and Eduard Hitzig in 1870, using galvanic stimulation of the cerebrum in the dog, had recently shown that circumscribed cortical areas control movements of the contralateral limbs and that ablation of these areas caused weakness in these limbs. Their findings established electrophysiology as an experimental tool and showed the localisation of motor function in the hemispheres.

Ferrier used faradic rather than galvanic current to elicit movements that resembled primate walking, grasping, scratching, and thereby confirmed and extended the results of Fritsch and Hitzig. Ferrier localised smell in the uncus of the brain.⁶ He was not obsessed by the anatomical localisation. The functions of the cerebrum were sensorimotor.

“From the complexity of mental phenomena and the participation in them of both motor and sensory substrata, any system of localization of mental faculties which does not take both factors into account must be radically false.” He thus anticipated 20th century holistic concepts of cerebral function.

“Ferrier was more than an experimentator; he was, rather, a philosopher who did not philosophise but who experimented,” remarks Rösch.⁷

By making lesions in the anterior frontal cortex, he deduced the effect on function: “while not actually deprived of intelligence . . . they had lost the faculty of attentive and intelligent observation.”

Thus, the frontal lobes might subserve the function of selection and inhibition of competing ideas.

He dedicated his work to Jackson:

“To Dr Hughlings Jackson who from a philosophical point of view has given more than the names to the disci-pline . . . of late experimental physiol-ogy, and who has been instrumental in placing it at the centre of neurological science . . . they have lost the faculty of attentive and intelligent observation.”

Removal of the precentral gyrus, he found, caused paralysis and a hemiplegic position of the contralateral limbs. In 1876 he collected his results to produce his acclaimed *The functions of the brain.*⁸ This demonstrated that ablations and faradic stimulation of the brain were better than the galvanic techniques of Fritsch and Hitzig. He had thereby mapped sensory and motor areas across several species, thus expanding both understanding⁹ and localisation of motor and sensory functions.¹⁰¹¹

Ferrier also performed decerebration experiments to distinguish between voluntary and reflex movement, and examined the control of eye movements by electrical stimulation of the cerebellum. He anticipated 20th century holistic concepts of cerebral function.

References

Sir David Ferrier MD, FRS

J M S Pearce

J Neurol Neurosurg Psychiatry 2003 74: 787
doi: 10.1136/jnnp.74.6.787

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/6/787

References

This article cites 9 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/74/6/787#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/