SHORT REPORT

Coexistence of CADASIL and Alzheimer’s disease

V Thijs, W Robberecht, R De Vos, R Sciot

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leuкоencephalopathy (CADASIL) is caused by point mutations in the Notch3 gene. Presenilins are proteins involved in the cleaving of both Notch and the amyloid precursor protein (APP). In cases of early onset Alzheimer’s disease mutations of the presenilin genes (PSEN1 and PSEN2) and APP can be found. A 64 year old patient with CADASIL (R169C-mutation) is reported, who, in addition to subcortical infarcts and granular osmophilic deposits, had numerous senile plaques and neurofibrillary tangles on pathological examination. Mutations in the APP, PSEN1, and PSEN2 genes were not identified. Neuropathological findings of Alzheimer’s disease may be found in CADASIL patients.

ADASIL is an autosomal dominant vasculopathy caused by point or splice site mutations in the Notch3 gene coding for the Notch3 transmembrane receptor. The disease is characterised by migraine with aura, recurrent transient ischaemic attacks or strokes, psychiatric disease, and subcortical dementia. The Notch receptor regulates cellular proliferation, differentiation, and developmental fate switching in a wide variety of tissues. Presenilin proteins are pivotal in regulating the proteolytic cleavage of amyloid precursor protein (APP) into amyloid β (Aβ), and play a similar role in the control of the Notch signalling pathway. Presenilin, or a cofactor associated with presenilin, appears to cleave Notch into an extracellular domain responsible for ligand binding and an intracellular domain that carries the signal transducing capacity. We report a patient with CADASIL who, in addition to characteristic CADASIL findings, had evidence of Alzheimer’s disease on pathological examination.

CASE REPORT

A previously healthy male patient suffered two lacunar brain stem strokes at age 54 and 56 years. After the second stroke the patient’s family noted increasing memory loss and apathy. Cardiovascular risk factors were absent. A complete cardiovascular evaluation was normal. The patient’s father had died from cerebrovascular disease and his sister and daughter had a history of transient ischaemic attacks or strokes, psychiatric disease, and subcortical dementia.

Pathology

The brain was fixed in 6% formalin. After three weeks of fixation, the following regions were sampled and processed to paraffin: frontal, insular, paramedian parietal and occipital cortex, hippocampus, basal ganglia, mesencephalon, pons, and medulla. A large slice of the cerebral hemisphere was also embedded. Sections were stained with haematoxylin and eosin, Klüver-Barrera, PAS ± diastase, and Congo red. Immunohistochemistry was performed using β44, ubiquitin, and tau antibodies. A cortical formalin fixed specimen was rinsed, fixed in glutaraldehyde, and processed for electron microscopy.

The brain weighed 1200 g. On coronal sections, bilateral prominent subcortical infarctions were present. The centrum semiovale was most affected, although the occipital periventricular white matter and the internal capsule and basal ganglia were also involved. Most infarctions were well delineated, with a relatively prominent yellowish border. The temporal lobe, including the hippocampal formation, and the corpus callosum were atrophic. In addition, the lateral and third ventricles were dilated.

On histology, the infarcted areas were surrounded by a pial-sade of loaded macrophages. Throughout the brain, the medium to small sized arterioles showed a concentric hyaline thickening with the presence of PAS positive granular material, mainly in the media (fig 1). The vessels of the white matter and leptomeninges were most affected.

Another striking feature was the presence of numerous mature senile plaques in the frontal, parietal, and temporal cortex, with some variability in numbers of plaques between the various areas examined. The plaques were β44, ubiquitin, and Congo red positive. On the β44 stain some vessel walls were also positive. The number of vessels with the granular material clearly outnumbered the vessels with the β44 positive material. In the vessels with both deposits, the β44 deposits surrounded the granular deposits (fig 1). Some of the senile plaques corresponded to neuritic plaques, as shown by tau staining. This staining also revealed numerous neuropil threads as well as neurofibrillary tangles, mainly in the hippocampus but also in the neocortex (fig 2). According to the criteria of Braak and Braak, the Alzheimer related changes correspond to stage V.

Ultrastructural analysis showed prominent changes in all vessels examined. They consisted of variably sized granular osmophilic deposits in between the smooth muscle cells of the tunica media, and in between the subendothelial basal lamina material. Convincing deposits of amyloid fibrils were not seen.

Genetic analysis

Genomic DNA was extracted from white blood cells using a traditional differential salt precipitation. Exons 3 and 4 of the Notch3 gene were amplified by polymerase chain reaction and sequenced on an ALF DNA sequencer (Amersham Pharmacia Biotech) by solid phase dyeoxy sequencing (the primer sequences are available on request).

Both daughter and sister of the patient were heterozygous for a C to T mutation on position 583 of exon 4, which leads to a substitution from arginine to cysteine on position 169 (Arg169Cys or R169C) of the Notch gene product.
Direct sequencing of the exons 3 to 12 of the PSEN1 and PSEN2 genes, and of exons 16 and 17 of the APP gene was done in the patient’s sister and daughter. No mutations were identified.

DISCUSSION

In this patient, histopathological study of the brain showed two types of lesion. The combination of PAS positive granular osmiophilic material in the wall of medium sized to small vessels with subcortical infarcts is characteristic of CADASIL. 11 In addition, the presence of hippocampal and neocortical amyloid plaques (some of which corresponded to neuritic plaques), neurofibrillary tangles, and β-A4 deposits in vessel walls imply the presence of Alzheimer’s disease. Interestingly, in the vessels with both granular and β-A4 deposits, the β-A4 always surrounded the inner granular “CADASIL” deposits, suggesting that the disease processes are related.

The frequency of Alzheimer’s disease in the general population between age 50 and 65 years is around 1% in large epidemiological studies. 8 Subclinical pathological features of Alzheimer’s disease are relatively frequent in patients in this age group, but are usually absent in the neocortex. The presence of numerous senile plaques and neurofibrillary tangles in the neocortex in this patient argues against preclinical Alzheimer’s disease and suggests that established Alzheimer’s disease contributed to his dementia. 9 However, as detailed serial neuropsychological testing was not done, more direct proof is lacking.

Most of the published pathological examinations in CADASIL patients did not reveal Alzheimer’s disease pathology, and CADASIL features are absent in classical Alzheimer’s disease. We found only one recent report in which both diseases coexisted, and this at a young age. That report described a 51 year old patient with progressive dementia, seizures, and leucoencephalopathy in whom necropsy showed a non-amyloid, non-atherosclerotic vasculopathy and granular osmiophilic material characteristic of CADASIL, combined with cortical neurofibrillary tangles and senile plaques. Genetic analysis was not available. 10

Our findings suggest that there might be a subgroup of CADASIL patients who, in addition to classical CADASIL findings, have Alzheimer’s disease pathology. Alzheimer’s disease may not only contribute to the cognitive impairment in these patients, but also share similar molecular mechanisms with CADASIL, as suggested by the role of presenilins in the processing of both APP and Notch. Whether Alzheimer’s disease leads to accelerated CADASIL pathology, or conversely whether CADASIL leads to accelerated Alzheimer’s disease in these patients, is at present unknown and should be the object of further study. Presenilins or a cofactor associated with presenilin cleave both the amyloid precursor protein and the notch protein. The cleaved notch protein then exerts its actions by inducing or inhibiting presently unknown downstream genes. 11 In CADASIL the cleaved ectodomain of the protein accumulates in the cell and this excess protein might lead to a toxic cascade that induces amyloid deposition. 12 Dysfunctional notch signalling could also induce or inhibit genes that are important in the pathogenesis of Alzheimer’s disease or in presenilin function. These hypotheses, however, remain entirely speculative.

Researchers who study the dementia associated with CADASIL as the expression of a pure white matter behavioural syndrome should bear in mind that the presence of unsuspected Alzheimer’s disease might confuse the clinical and the behavioural syndrome. 12

Our findings also imply that pathological examination of patients with CADASIL remains necessary even though the diagnosis of CADASIL can now be made with skin biopsy, MRI, and genetic testing. 13

Figure 1 [A] PAS positive granular deposits in the tunica media of a vessel as seen in CADASIL. [B] Same vessel surrounded by β-A4 positive deposits typical of Alzheimer’s disease.

Figure 2 Tau positive neurofibrillary tangle (arrowhead) and neuritic plaque (arrow) in the neocortex as found in Alzheimer’s disease.

Clinical Evidence Call for reviewers

Clinical Evidence is also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are health care professionals or epidemiologists with experience in evidence based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and health care professionals, possibly with limited statistical knowledge). Topics are usually 2000–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com or contact Claire Folkes (cfolkes@bmjgroup.com).