Subthalamic deep brain stimulation for advanced Parkinson’s disease: all that glitters is not gold

I read with interest the article “Behavioural disorders, Parkinson’s disease and subthalamic stimulation” by Houeto et al and the accompanying editorial published last year in your journal.1 One of the main conclusions of that study was that sometimes the reality cannot be completely reflected in a paper because many studies conducted to assess the efficacy of therapeutic interventions in Parkinson's disease focus on the motor aspects of the disease, while other aspects—cognitive or emotional—for example—are forgotten or insufficiently assessed by current rating scales such as the UPDRS. This is the case with most of the published studies related to deep brain stimulation (DBS). For this reason, I would like to add our experience with 18 patients operated on in our centre and included in the largest multicentre study conducted up to now. In this study neither cognitive functioning nor quality of life were properly evaluated. Four of the 18 patients were prematurely withdrawn because of the occurrence of severe adverse events (two intracranial haemorrhages, one possible cortical venous thrombosis resulting in infarction, and one severe infection necessitating the removal of both DBS systems). In another patient with an impressive clinical result, one electrode was removed because of an infection, leading to a loss of efficacy in the contralateral hemibody. Three patients showed an improvement in motor function but also cognitive deterioration which was clinically relevant in one of them. Motor symptoms were significantly ameliorated in another patient; however, he developed postural instability with falls and mild cognitive deterioration with confusional episodes requiring institutionalisation. Another patient with Parkinson's disease and an associated gait disorder poorly responsive to levodopa, and with multiple lacunae on MRI, experienced a mixed result: whereas rest tremor and rigidity were markedly improved, the gait remained unchanged. Moreover, she had to start urinary incontinence and remained in a wheelchair. In two further patients, though DBS markedly improved all the cardinal symptoms of Parkinson's disease and levodopa induced dyskinesias, they both developed profound depression with apathy and social isolation.

In summary, with respect to the global clinical improvement and quality of life, we can conclude that six months after the intervention DBS was highly beneficial in six patients. However, the remaining 12 patients suffered from a series of adverse effects that precluded a good clinical outcome, although an improvement in motor function was observed in many of them. Thus, one can obtain an unrealistically high impression of the impact of DBS in real life in this particular group of patients if only the motor aspects of the disease are analysed and summarised in a table.

Furthermore, as has been repeatedly noted in several congresses, around 25–30% of patients included in the multicentre study improved by less than 25% in the motor sub-scale of the UPDRS in double blind assessment, a result that can be considered unsatisfactory. For this reason, in this and other studies it would be important to indicate the percentage of patients improving more or less than a given level (for example, 25% in UPDRS III). It should be emphasised that this was our initial experience and, in fact, it is quite similar to the one reported by Kumar et al with their initial nine patients.7 Seven of them completed evaluations and four of them (elderly patients with advanced disease) developed operative complications. In spite of this, the reduction in off-period parkinsonism and the increase in daily “on” time were impressive. These investigators concluded that the motor benefits outweighed the adverse effects. This was also the case in some (but not in all) of our patients.

Finally, a recently published retrospective study of 211 patients conducted by Spanish teams showed that 19% of the operated patients failed to obtain a good clinical result.7 Analysis of the possible reasons for these unsatisfactory results showed that the correct selection of surgical candidates (72% were elderly patients with cognitive deficits, lacunae on MRI, or levodopa resistant symptoms) and definition of the target, along with surgical experience, were of crucial importance in obtaining the best results. The use of stricter selection criteria or a careful preoperative evaluation of psychiatric and cognitive function seems to be mandatory after the report by Houeto et al, and a larger surgical experience with these results. Therefore, I am convinced that at present the results are improving and will be even better in the future. I hope that the experiences of Houeto et al, along with those reported in this letter, will be useful for teams who are ready to start DBS procedures.

G Linazasoro
Centro de Neurología y Neurocirugía funcional, Clínica Quirón, Parque Alcolea s/n, 20012 San Sebastián, Spain, glinazasoro@terra.es

References

Authors’ reply
We thank Dr Linazasoro for his comments following the publication of our article.7 The marked differences between our results and those of Dr Linazasoro are not related to the behavioural disorders we observed in some parkinsonian patients following bilateral subthalamic nucleus (STN) stimulation. Indeed, the response of parkinsonian motor disability to levodopa treatment was poor; and there were axial motor signs poorly responsive to levodopa (gait disorder, postural instability, falls), cognitive impairment, and abnormal MRI (lacunae). It is therefore not surprising that the postoperative clinical outcome was poor, including severe adverse events. We agree with Dr Linazasoro that strict criteria need to be used to select appropriate candidates for neurosurgery. In our own experience, excellent results can be obtained provided that strict inclusion criteria are fully respected: the response of the patients to levodopa treatment must be excellent, which means that axial motor symptoms (that is, freezing, postural instability, hypophonia), known to poorly respond to levodopa, must be absent or moderate; cognitive and psychic impairment must also be absent, and the MRI must be normal. Needless to say, the effect of the neurosurgery also depends upon the optimal placement of the electrodes within the STN, together with careful postoperative fine tuning of the electrical parameters.

In brief, the success of this neurosurgical approach to levodopa responsive forms of Parkinson’s disease requires the expertise of a multidisciplinary team including neurosurgeons, neuroradiologists, neurophysiologists, and neurologists.

J L Houeto, V Mesnage, L Mallet, M L Welter, D Dormont, B PIDoux, P Cornu, Y Agid
Centre d’Investigation Clinique and IFR 70 Neurosciences, Hôpital de la Salpétrière, 47 bvd de l’Hôpital 75651 Paris, France, agid@ccr.jussieu.fr

References

Head injury outcome prediction in the emergency department: a role for protein S-100B?

I read with great interest the recent article by Townend et al in which the authors studied the predictive value of protein S-100B in patients with head injury upon performance in the extended Glasgow outcome scale (GOSE). One important criticism of that study was performed in the setting of head injury defined as “any blow to the head causing a clinical diagnosis of head injury to be made, even if insufficient to cause definite loss of consciousness” and not only in patients with traumatic brain injury, which is defined...
at least through loss of consciousness, amnesia, or postconcussional syndrome. Consequently, relevant abnormality of the brain even in minor traumatic brain injury was only detected in a few patients.

In addition, cerebral computed tomography (CT) was only performed in 15 of 148 patients. The extent of possible traumatic brain injury in the patients in the study by Townsend et al. cannot be estimated. Patients with frontal contusion lesions in CCT and/or diffuse axonal injury were not separately identified in this study. Those patients are at high risk of having neuropsychological deficits and also frequently suffer from loss of insight. This may falsify the outcome measured by the extended Glasgow coma scale that was obtained by telephone interview only. Assessment by phone has limitations and cannot substitute a detailed neurological and neuropsychological examination that would reveal the above mentioned deficits.

In literature, CT controlled studies by Romner et al (RIA), Ingebrigtsen et al (RIA) and Biberthaler et al (LIA-mat) calculated that an undetectable protein S-100B or protein S-100B below a cut off point at 0.1 ng/ml predicts normal intracranial findings. In recent work, Herrmann et al (LIA-mat) showed that an initial S-100B value above 0.14 ng/ml has a high positive predictive value for short-term and long-term neuropsychological deficits in traumatic brain injury. A prospective study has not been performed yet.

The authors of the above mentioned studies believe that our S-100B measurements were made retrospectively. Our cohort was recruited prospectively. The blood samples taken for S-100B level estimation were collected from patients with short and long term neuropsychological follow up.

Wunderlich states that our S-100B measurements were made retrospectively. Our cohort was recruited prospectively. The blood samples taken for S-100B level estimation were collected from patients with short and long term neuropsychological follow up.

M T Wunderlich
Department of Neurology, Otto-von-Guericke University, Leipziger Straße 44, Magdeburg 39120, Germany
michael.wunderlich@medizin.uni-magdeburg.de

References

Authors’ reply
We thank Wunderlich for his thought provoking letter. The chief reservations expressed regarding the potential applicability of our findings seem to be that the entry criteria were too broad, that the measurements of protein S-100B were made retrospectively, that no CT control was performed, and that follow up might be biased. We will consider these points in turn.

The entry criteria were kept as broad as possible to enable the full cross section of patients with head injury to be evaluated. We are aware that traumatic brain injury is delineated more accurately by the presence of a period of altered consciousness, particularly for research purposes. However, we were unable to find evidence in published literature that disability after head injury is sufficiently defined to be measured by the outcome measure used. Thus the rate of head trauma would be expected to be higher than in those without such an alteration of consciousness level. Also, there are no published data that we are aware of that demonstrate S-100B levels in those without altered consciousness after head trauma. We thought this would be of interest as clearly if there was a large proportion of this group with raised S-100B level and a useful clinical outcome, then its use as a prognostic marker would be limited by this false positive rate. For these reasons we consider our entry criteria apposite. By keeping patient selection as simple as possible, we anticipate that the least experienced practitioner would be competent to identify a patient in their practice that would be represented by our data. Our study, therefore, passes the test of applicability.

Reference
Wunderlich M. Emergency Department, Hope Hospital, Stott Lane, Salford M6 8HB, UK

Correspondence to: Dr W Townsend; wtownend@fs1.ho.man.ac.uk

www.jnnp.com

Discussion
The extent of possible traumatic brain injury by this false positive rate. For these reasons we consider our entry criteria apposite. By keeping patient selection as simple as possible, we anticipate that the least experienced practitioner would be competent to identify a patient in their practice that would be represented by our data. Our study, therefore, passes the test of applicability.

The role of CT in the prediction of head injury outcome, or the relation between S-100B level and CT findings were not the aims of this study. CT data were included to demonstrate the infrequency of the use of this imaging modality in current UK practice, and thereby emphasize the role a serum marker might have. The purpose of CT in the emergent care of the patients with head injury is to identify lesions amenable to surgical intervention. Patients included after the time of mild head injury often have normal CT scans, indeed our data suggest that currently in the UK many such patients will not even undergo such an investigation. There is also evidence that serum S-100B is a better predictor of outcome than Marshall CT classification after severe head injury. We therefore foresaw little benefit in this study in correlating S-100B with CT outcome. It is likely to remain a poor surrogate for the entity we specifically sought to assess, namely neurological disability, which we scored directly using a validated tool. Routine CT, therefore, was not necessary in this study. Clearly a serum marker that, if “negative”, could exclude a lesion requiring surgical intervention would be of immense value, but that was not the purpose of this study.

The possibility of the misrepresentation of outcome by patients with undiagnosed frontal contusions because of lack of insight was not considered when designing our study. That this effect might be exacerbated by telephone follow up is conceded. However, despite their limitations, we believe our arrangements ensured a reasonable follow up rate. This is not routinely the case in head injury studies. We also believe that the validity of our outcome measure has been demonstrated in published literature, and is also clinically relevant. The purpose of attempting to prove our outcome measure is that we have done is to identify those patients with head injury likely to benefit from intervention. If the assessment of that need is based on their outcome to return to their previous life, rather than important but not so obviously relevant neuropsychological impairments, then a more compelling case can be made for such a programme to be resourced.

W Townsend, B Martin, D Yates
Emergency Department, Hope Hospital, Stott Lane, Salford M6 8HB, UK

M Guy
Biochemistry Department, Hope Hospital
Correspondence to: Dr W Townsend; wtownend@fs1.ho.man.ac.uk

Reference

Screening for variant Creutzfeldt-Jakob disease
The letter by Joiner et al. describes the lack of detectable prion protein (PrP) in three of four necropsy appendix samples from vCJD cases using a combination of immunocytochemistry and western blotting, thereby questioning the utility of large scale screening for PrP accumulation in appendix tissue samples as an estimate of people who may be incubating vCJD. In our original description of PrP accumulation in the appendix before the onset of symptoms, we noted that PrP accumulation was focal and therefore we have used extensive sampling of the appendix for our study, resulting in a median of more than 24 secondary lymphoid follicles examined in each appendix case included. In addition we have used two different monoclonal antibodies to PrP and a very sensitive detection system, to reduce the risk of false negatives. Using this approach we were able to detect lymphoreticular PrP accumulation in 19 of 22 vCJD necropsy appendix samples tested (two of the three negative samples had inadequate amounts of lymphoid tissue for assessment and would not have met inclusion criteria for our study). In addition, of the three appendix samples removed before the onset of symptoms, the two removed in the 1990s were positive, and the third, removed in 1987 was negative.

While we accept that the sensitivity and specificity of screening tissue samples for lymphoreticular accumulation of PrP as a marker for vCJD is unknown, it seems to be a reliable approach to predict outcome in these patients. However, the lack of an alternative test and considerable uncertainty about future numbers of vCJD cases, we feel that such a study is justified.

The study has necessarily concentrated on appendix samples (as comparatively few tonsillectomy samples are archived), however we have recommended large scale screening of fresh tonsil tissue on a prospective basis, which the Department of Health has now agreed to undertake.
The Nobel prize in medicine and the Karolinska Institute

The considerable enjoyment to be had from this unusual book is not altogether to be anticipated from the title. It derives from the diversity of material it contains, which ranges from the history of medicine in Sweden and the rivalry between the upstart Karolinska Institute (founded in 1810) and the old universities of Uppsala (1477) and Lund (1668), to the opening lines of a poem written at the age of 19 by Alfred Nobel after his first meeting with a Mlle Rivière in Paris. The book is built around the life and contributions of Axel Key, whom neurologists remember for his definitive demonstration with Retzius of the nature of the circulation of the cerebrospinal fluid. His achievements were, however, much wider. Under his influence first as Professor of Pathological Anatomy (from 1862) and later as Rector (1886-1897) and a Member of Parliament (1881-1890), the Karolinska Institute expanded and gained in international prestige until by 1895 it was the international choice of Alfred Nobel for the responsibility of selecting the laureate for his prize in physiology or medicine. More generally, Key raised the profile of Scandinavian medicine by founding, in 1862, a journal for in Stockholm, Sonya Kovalevskaya, the first woman professor in any subject in Europe; this because Key had performed a postmortem on her in 1891. There are lengthy extracts from Key's letters to his wife written on his two great journeys to European universities centres in 1872 and in 1893. During the former Key met again Rudolf Virchow, with whom he had studied in 1861, and some of his fellow students from that period, including Billroth and von Recklinghausen. On the later journey he spent an evening, by chance, with Alfred Nobel—their only meeting. Nobel had already made a generous gift to the Karolinska and told Key it would not be the last. The letters tell of Key's impressions of the people he met and give a flavour of the (often very grand) style in which senior figures in the university world lived in those days. The scientific contributions of many of his hosts are summarised in an extensive appendix.

There is much less about Nobel, although his originality, his breadth (he was interested in experimental physiology as well as explosives), and his naive faith that "my dynamite factories can put an end to war quicker than.... peace congresses" comes clearly across. The book is extensively illustrated, mostly by portraits, and is lavishly produced.

W I McDonald

The parahippocampal region: organization and role in cognitive function

The parahippocampal region is a curious place: it genuinely has the potential to be of interest to a variety of neuroscientists and clinical disciplines. This book is certainly worth taking a look at if you are interested in learning and memory or high level visual processing in healthy individuals; or if your predilection is for disease states of such diversity as dementia, temporal lobe epilepsy, and schizophrenia.

Many of the chapters cover the basic neuro-science of the parahippocampal region—its anatomical parcellation, connectivity, neurophysiology, and the effects of lesions in animal models. There is a plethora of terminology here and I wonder whether the reader could not have been helped greatly by the use of more line drawings, particularly when it comes to the anatomy. My working memory was certainly pushed to its capacity limits on occasions by the nomenclature! Despite this shortcoming, these chapters really do provide a wealth of useful information and direct access to the primary animal literature.

When it comes to humans, several chapters make a useful contribution. I found the chapter by Van Hoesen on the anatomy of the human parahippocampal region and its involvement in dementia to be particularly helpful and clear. The discussion on imaging cognitive functions of the parahippocampal region by Fernandez and Tendolkar was also interesting but surprisingly short given the explosion of interest in this region.

My overall impression is that this book is a useful resource, but it is unlikely that anyone will find more than a handful of chapters here that are directly useful and relevant to their interests. Nevertheless, this is a useful reference book that most medical libraries would find well worth obtaining.

M Husain

Cancer neurology in clinical practice

This is another welcome addition to the expanding number of neuro-oncology textbooks that have exploded onto the market in the past few years. It has been edited by two alumni of Memorial Sloan-Kettering Cancer Center and 24 of the 50 authors received their neurological training at Sloan Kettering, so they are well placed to address the problems of neurological complications of systemic cancer.

This book is a reference text and is aimed at providing clinicians from various backgrounds with a core text to help them diagnose and manage neurological complications of cancer. There are 31 chapters written on 650 pages and the editors have subdivided the book into seven parts, starting with an overview of the prevalence and impact of neurological disease in cancer. The subsequent chapters cover neurological symptoms, particularly headache, confusion and cancer pain, direct and indirect complications of cancer, complications of cancer therapy, diagnostic studies (really a single chapter on imaging), and then complications of specific malignancies. This last section is an interesting but surprisingly short given the explosion of interest in this region.

I found the book eminently readable, well illustrated, and informative (for example, I had never previously come across the rapidly fatal encephalopathy seen in patients after haemato poetic stem cell transplantation called idiopathic hyperammonaemia). I also tried it out in the wards when I was asked to see a patient with a suspected trigeminal neuroma who turned out to have a metastasis from a previous breast cancer ten years ago. Sure enough, the book noted in the section on Breast Cancer under Skull and Skull Base Metastasis that “cranial nerves V and VII are involved most frequently”.

It is as up to date as a textbook can be, devoting two pages to the thorory subject of radiosurgery for brain metastases and it even cites unpublished data on a recent RTOG trial, only available on the web. I would therefore recommend this book to anyone who deals with oncology patients and particularly to neurologists working in big cancer centres. The information is accessible, current, and well indexed.
Screening for variant Creutzfeldt-Jakob disease

D A Hilton and J W Ironside

J Neurol Neurosurg Psychiatry 2003 74: 828-829
doi: 10.1136/jnnp.74.6.828

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/6/828

These include:

References
This article cites 4 articles, 3 of which you can access for free at:
http://jnnp.bmj.com/content/74/6/828#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/