Influence of age on the association between primary hemifacial spasm and arterial hypertension

G Defazio, D Martino, M S Aniello, G Masi, G Logroscino, G Manobianco, M La Still, P Livrea

Objective: To investigate the association between primary hemifacial spasm and arterial hypertension.

Subjects: 114 patients with primary hemifacial spasm and 228 neurological controls, matched for age, sex, and referral centre, were recruited during an 18 month period from consecutive outpatients attending two neurological institutions.

Design: The association between exposure variables and case/control status was examined in conditional logistic regression models, adjusting simultaneously for disease duration and education level.

Results: Hypertension was more common among the patients with primary hemifacial spasm than among the controls. The association was independent of age, disease duration, years of schooling, and other diseases (adjusted odds ratio [OR] 2.76 [95% confidence interval [CI], 1.43 to 5.33]; p = 0.002). Hypertension was associated with hemifacial spasm in both the left sided group (adjusted OR, 2.76 [1.18 to 6.44]; p = 0.02) and the right sided group [adjusted OR, 3.02 (1.13 to 8.1)]; p = 0.03]. The association of hypertension with hemifacial spasm was apparently greater in the age group < 60 years (adjusted OR, 4.2 [1.4 to 12]; p = 0.008) than in the age group ≥ 60 years (adjusted OR, 2.5 [CI 1.3 to 4.6]; p = 0.005), but the difference in the OR estimates between the two age groups was not significant. Among hypertensive patients, mean age at the diagnosis of hypertension was significantly lower than mean age at the onset of hemifacial spasm in the age group ≥ 60 years, but not significantly different in the age group < 60 years.

Conclusions: The findings support the hypothesis that the association of primary hemifacial spasm and hypertension may be different in different age groups.

METHODS

During the study period, primary hemifacial spasm was diagnosed in 114 subjects (65 left sided, 49 right sided) according to published criteria. Secondary causes were excluded by computed tomography or magnetic resonance imaging (MRI) of the head. Neurovascular compression of the seventh cranial nerve was suspected in 38 of 67 patients who had MRI (56.7%). This was lower than the percentage generally reported, presumably because the study was not designed to include advanced MRI, and because equipment and radiologists differed.

For each case, two control subjects, matched for age (±5 years), sex, and referral centre, were identified from among outpatients suffering from cephalalgia, epilepsy, head trauma, amyotrophic lateral sclerosis, adult onset dystonia, cerebellar ataxia, and peripheral nerve entrapment syndromes. The participation rate was 100% among cases and 94% among controls. Using two controls per case assured adequate power to test the association of hypertension and hemifacial spasm in the left sided and right sided subgroups. According with the equation reported by Schlesselman, the study had a greater than 80% chance of detecting a threefold modification in the risk of developing either left sided or right sided hemifacial spasm for the variable hypertension.

As previously reported, all cases and controls had appropriate clinical, blood, and urine laboratory investigations designed to evaluate hypertension or other diseases potentially associated with hypertension. In particular, systolic and phase V diastolic blood pressures were measured in both arms of all cases and controls (including those receiving antihypertensive drug treatment) using an appropriate sized cuff, with the subject seated and after a 20 minute rest. On each visit, three readings obtained at two minute intervals were averaged. Hypertension was defined as an average systolic blood pressure of ≥ 140 mm Hg and a diastolic pressure of ≥ 90 mm Hg on three separate visits over two to three weeks. At interview, hypertension was diagnosed in four new cases of hemifacial spasm and two controls. Age, sex, years of schooling, age at the onset of hemifacial spasm or control disease, and age at the diagnosis of hypertension were recorded.

The association between exposure variables and case/control status was examined in conditional logistic regression.
models, always adjusting simultaneously for disease duration and education level. Given the imperfect match on age, estimates were also adjusted for this variable. Odds ratios (OR), 95% confidence intervals (CI), and probability (p) values (likelihood ratio statistics) were calculated using a standard statistical package (Stata 7).

RESULTS
Demographic and clinical features of case and control groups are given in Table 1. Cases had a longer duration of disease and a lower level of education than controls. Both arterial hypertension and other diseases (including diabetes, renal failure, and hyperthyroidism) were more common in cases than controls. Stratifying cases by duration of hemifacial spasm showed no increase in the relative frequency of the association. Hypertension was significantly associated with arterial hypertension independently of potential confounding factors. Though the study design was similar to two previous case–control studies, independent replication of results in different datasets is important in association studies. In addition, our analysis provided new information indicating that left sided and right sided hemifacial spasm both contribute to the association of hemifacial spasm and hypertension, and that age may influence this association.

Table 1

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Cases (n=114)</th>
<th>Controls (n=228)</th>
<th>OR (95% CI), p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex [men/women]</td>
<td>40/74</td>
<td>80/148</td>
<td>1</td>
</tr>
<tr>
<td>Age [years]</td>
<td>61.9 [12.3]</td>
<td>61.5 [12.5]</td>
<td>1.06 (0.97 to 1.15), 0.2</td>
</tr>
<tr>
<td>Mean [SD]</td>
<td>65</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>20 to 83</td>
<td>18 to 84</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of disease [years]</td>
<td>8.2 [6.2]</td>
<td>4.8 [6.69]</td>
<td>1.1 (1.04 to 1.14), <0.001</td>
</tr>
<tr>
<td>Mean [SD]</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1 to 33</td>
<td>1 to 43</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of schooling [years]</td>
<td>5.1 [2.6]</td>
<td>6.3 [4.1]</td>
<td>0.87 (0.83 to 1.1), 0.1</td>
</tr>
<tr>
<td>Mean [SD]</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2 to 13</td>
<td>0 to 18</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension [n, %]</td>
<td>62, 54%</td>
<td>86, 38%</td>
<td>2.83 (1.6 to 4.9), <0.001</td>
</tr>
<tr>
<td>Other diseases [n, %]</td>
<td>15, 13%</td>
<td>11, 5%</td>
<td>3.05 (1.32 to 3.06), <0.01</td>
</tr>
</tbody>
</table>

CI, confidence interval; OR, odds ratio.

Table 2

<table>
<thead>
<tr>
<th>Hypertensive patients</th>
<th>Age at the diagnosis of hypertension</th>
<th>Age at the onset of hemifacial spasm</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All [n=62]</td>
<td>55.8 [10.2]</td>
<td>59.1 [11.0]</td>
<td>0.03</td>
</tr>
<tr>
<td>≥60 years [n=49]</td>
<td>58.4 [9.4]</td>
<td>63 [7.5]</td>
<td>0.01</td>
</tr>
<tr>
<td><60 years [n=13]</td>
<td>46.2 [6.9]</td>
<td>44.7 [9.8]</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Values are mean (SD); p values obtained from two tailed paired Student t test.
As this was not a population based study, we corrected for potential bias in case selection by recruiting consecutive patients attending two neurological centres of the same geographical area who met the eligibility criteria during the study period. In this case series the demographic features resembled those in the general population of cases, and survival bias was unlikely. To minimise bias caused by overrepresentation of control subjects with diseases associated with exposures, the control series comprised a variety of diagnostic groups with similar rates of exposures. The frequency of hypertension among controls and the increase with age reflected the Italian population in this age group.

The similar contribution of left sided and right sided hemifacial spasm to the association with hypertension is at variance with a previous study by our group. In that study, arterial hypertension related more strongly to left sided hemifacial spasm. However, data for the right sided group yielded inconclusive results because they lacked statistical power.

As indicated by the odds ratios, the association of hypertension with hemifacial spasm was apparently greater in the age group less than 60 years than in the older subjects. Owing to the small size of the samples, confidence intervals were wide and overlapped, thus indicating that the difference in the odds ratio estimates between the two age groups was not statistically significant. Nevertheless, estimation of confidence intervals suggests that the magnitude of the association between hypertension and hemifacial spasm may be greater in the < 60 years age group than in older subjects. This could be an artefact of selective mortality or the result of confounding by other factors. At present, there are no data to support the selective mortality of patients with hypertensive hemifacial spasm compared with hypertensive controls. Multivariate analysis also excluded confounding by certain demographic and clinical variables.

Hypertension preceded hemifacial spasm in the age group ≥ 60 years, whereas no significant difference was observed in younger patients. This might merely reflect information bias. Retrospective determination of age at the onset of hemifacial spasm by interview can be influenced by several factors, including the time span between the interview and the event, recall motivation, culture, and education. The fact that hypertension cases aged ≥ 60 years and < 60 years had a similar duration of hemifacial spasm and a similar level of education makes information bias unlikely.

Overall, our findings raise the possibility that different mechanisms underlie the association of hemifacial spasm and hypertension in different age groups. In older patients, hypertension may be a risk factor, possibly by producing vascular anomalies compressing the facial nerve. The other proposed mechanism—multiple neurovascular compressions of the facial nerve and ventrolateral medulla, inducing both hemifacial spasm and hypertension—could be responsible for the presence of both these features in younger patients. In support of this view, neurovascular anomalies may have a genetic basis and may precede the development of hypertension. At variance with earlier uncontrolled surgical observations indicating a selective relation between left sided neurovascular compression of the VLM and hypertension, recent anatomical data and evidence from laboratory animals indicate that the pressor role of the VLM is not associated with laterality. This is consistent with the equal contribution of left sided and right side hemifacial spasm to hypertension in our series. Studies integrating MRI, heart rate variability, and systolic arterial spectral analysis may be necessary to confirm or reject the neurovascular hypothesis of arterial hypertension in hemifacial spasm. Our findings may be of value in designing such studies.

Authors’ affiliations
G Defazio, D Martino, M S Aniello, G Masi, P Livrea, Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
G Logrosino, G Manobianca, M Lo Stilla, Department of Neurology, Ospedale Mulini, Acquaviva delle Fonti, Italy

Correspondence to: Dr Giovanni Defazio, Department of Neurological and Psychiatric Sciences, University of Bari, Piazza Giulio Cesare 11, I-70124 Bari, Italy; gdefazio@neurol.uniba.it

Received 29 November 2002
In revised form 20 January 2003
Accepted 20 January 2003

REFERENCES
Influence of age on the association between primary hemifacial spasm and arterial hypertension

G Defazio, D Martino, M S Ariello, G Masi, G Logroscino, G Manobianca, M La Stilla and P Livrea

J Neurol Neurosurg Psychiatry 2003 74: 979-981
doi: 10.1136/jnnp.74.7.979

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/7/979

These include:

References
This article cites 13 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/74/7/979#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Hypertension (380)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/