Neutralising antibodies to interferon β during the treatment of multiple sclerosis

Giovannoni and colleagues are to be commended for their detailed analysis of the impact of neutralising antibodies (NAB) to interferon β (IFNβ) during the treatment of multiple sclerosis. We are in general agreement with many of their statements and conclusions, but a few points should be discussed in a wider context.

With respect to the clinical significance of neutralising antibodies to IFNβ, the authors state that “IFNβ has little if any clinical and MRI efficacy in the presence of neutralising antibodies.” We think it is appropriate to be more circumspect, as most published studies suggest that in NAB positive patients, clinical (and MRI) efficacy of interferon treatment is present when compared to placebo, and that there is some evidence that more immunogenic higher dose treatment can be more effective than less immunogenic lower dose treatment. Giovannoni et al appear to base their statement on the increase in T2 burden of disease in the NAB positive group in the PRISMS extension study, but they do not mention similar comparisons which, if interpreted in the same way, would indicate that the NAB positive group does better than the placebo group. For example, the relapse rate in placebo patients was 1.3/year in years one to two, whereas it was 0.81 and 0.50 in NAB positive and negative high dose patients in years three to four. We recognise that this specific comparison is fraught with difficulties owing to time trends in the relapse data, but these potential difficulties are present in all such comparisons. In a recent paper we report—in probably the largest study of neutralising antibodies in multiple sclerosis, describing 100 NAB positive patients in the European SPSM study—that high titres of neutralising antibodies do have a clinical impact, but that this impact is rather limited, and that on both clinical and MRI measures patients on active treatment who develop neutralising antibodies continue to do consistently better than those on placebo. The main conclusions of this paper are based on longitudinal analyses of the data on those patients who switched from NAB negative to NAB positive status; this is the only statistical approach that allows a direct assessment of whether the change from NAB negative to NAB positive status is associated with diminished efficacy of a treatment. Cross sectional comparisons are not fully reliable for establishing the impact of neutralising antibody positivity, as NAB positive and negative subgroups may differ on baseline variables (maybe unobserved) that are predictive of both neutralising antibody formation and diminished clinical response.

Giovannoni et al also state that during continued treatment “in the case of IFNβ-1b some NAB positive patients revert to NAB negative status over two to five years of follow up” and that “patients with high titres of neutralising antibodies seldom revert to being negative.” In the European study of IFNβ-1b in secondary progressive multiple sclerosis the proportion of treated patients who have been NAB positive and subsequently revert back to being NAB negative is about 40% after a treatment duration up to three years (without convincing evidence that patients with higher titres revert less frequently), whereas in the study by Rice et al this percentage is close to 80% after a mean treatment duration of more than six years.

In our opinion, these data suggest that the clinical impact of neutralising antibodies to IFNβ during the treatment of multiple sclerosis may be more limited and more transient than suggested in the editorial, and that the development of neutralising antibodies in itself does not provide justification for switching treatments or for considering (aggressive) strategies to reduce or reverse the development of neutralising antibodies. Given the current rather uncertain state of knowledge concerning the impact of neutralising antibodies, we advocate that treatment decisions should be based on clinical grounds rather than on neutralising antibody titres.

C H Polman
Department of Neurology, VU Medical Centre, 1007 MB Amsterdam, Netherlands

L Kappos
Department of Neurology, University Hospitals, Basel, Switzerland

J Petkau
Department of Statistics, University of British Columbia, Vancouver, Canada

A Thompson
Institute of Neurology, University College London, UK

Correspondence to: Professor C H Polman; ch.polman@vumc.nl

Neutralising antibodies to interferon β

I read the editorial by Dr G Giovannoni and colleagues’ with great interest. I have, however, to report a minor error concerning the list of the excipients of the Rebif reported in their table 1. In the table the authors reported the following excipients: mannitol, HSA, sodium acetate, acetic acid, sodium chloride. Actually, as you can check in the summary of product characteristics published from EMEA (www.emea.eu.int) on 29 March 1999, in the list of excipients sodium chloride is absent, whereas sodium hydroxide is present.

C Ortenzi
Department of Molecular, Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; claudio.ortenzi@tin.it

Reference

Authors’ reply

We would like to thank Dr Ortenzi for pointing out our transcription error in relation to the excipients of Rebif® in table 1 of our editorial.1 We agree with Polman and colleagues that recent comparisons show that the more immunogenic higher dose interferon β (IFNβ) preparations are more efficacious than the lower dose less immunogenic preparations over 24 months and six months’ periods of observation. However, as discussed in our editorial, the development of neutralising antibodies and their effects on the clinical efficacy of IFNβ are delayed. In the PRISMS study the effect of neutralising antibodies on clinical efficacy only became apparent in years 3–4.2 In the pivotal IFNβ-1b study an effect on relapse rate was only observed in the 19–24 and 25–30 month epochs.3 Hence we would argue that these comparative studies1 are simply too short, and in the case of the INCOMIN trial underpowered (n = 188),4 to demonstrate an effect of neutralising antibodies on clinical efficacy. It is therefore impossible to extrapolate the significant short-term differences in response to neutralising antibodies to more extended periods of observation reported.

Because of regression to mean and the well documented tendency for the relapse rate to decrease with disease duration, it is not possible to draw any meaningful conclusions from a comparison of the relapse rate in years 1–2 and years 3–4 from the PRISMS extension study.1 In addition to the impact of neutralising antibodies on relapse rate, the PRISMS extension study clearly shows—using the more objective T2 lesion volume or burden of disease—that the average annualised increase in lesion volume over four years in the neutralising antibody positive (NAB+) patients is similar to the increase in the annualised lesion volume in the placebo treated patients in the first two years of the study (NAB+ 4.4% v placebo 5.4%).6 Similarly, in the IFNβ-1b study7 the relapse rate of NAB+ patients is identical to patients on placebo (1.08 v 1.06). In the IFNβ-1a (Avonex®) trial,8 the impact of neutralising antibodies was limited to MRI outcomes. A failure of neutralising antibodies to have an effect on disease progression and relapse rate in this study probably reflects the size and duration of follow up, as the study was terminated prematurely. It is these data from the pivotal relapsing multiple sclerosis clinical

CORRESPONDENCE
trials, and other studies on in vivo markers of IFNB activity discussed in our editorial, that we use to support our statement that “interferon β has little if any clinical and MRI efficacy in the presence of neutralising antibodies.”

Data on the impact of neutralising antibodies in secondary progressive multiple sclerosis (SPMS) trials is less clear. This is to be expected, however, as the efficacy of IFNB on disease progression—the primary outcome measure in SPMS trials—is limited and hence it would be difficult to demonstrate a significant impact on neutralising antibodies on the primary outcome measure when the actual therapeutic intervention itself is only marginally effective. It would be very surprising if neutralising antibodies had a significant impact on disease progression, as none of the trials is powered to detect an effect of neutralising antibodies on this outcome. For example, in the European SPMS study, 100/360 (28%) of IFNB-1b treated patients became NAB+ (titre > 20) over the course of the trial. Using a conservative approach by applying the results from the trial, and assuming that NAB+ patients behave as if they are on placebo and NAB− patients behave like the IFNB-1b treated cohort, one would expect 49.8% of the 100 NAB+ patients to progress over three years, compared with 38.9% of the 260 NAB− patients. At the same level of significance (0.029) from the original study, it would only have a 35% chance of detecting a significant difference between NAB+ and NAB− patients (Fisher’s exact test). Compare this to a power of 80% used in the design of the original study. This power calculation is an overestimate as it ignores the therapeutic effect observed before the development of neutralising antibodies, as evidenced in this study, which if taken into account, would seem reasonable if there are no carryover therapeutic effects of IFNB-1b treatment from the NAB− to NAB+ phase and if the follow up in the NAB+ phase is of sufficient duration to account for the delayed effects [24 to 48 months] of neutralising antibodies on clinical efficacy. In this study the mean follow up in the NAB+ phase would be on average too short [less than 24 months] for one to be confident of excluding a delayed effect of neutralising antibodies on disease progression. Despite the lack of power of these subanalyses, they produce some surprising results. In the cross sectional study there was a trend towards greater disease activity in the NAB+ group in the third year, and a significant percentage T2 volume change from baseline to year 1, year 2, and the last visit; in the underpowered and potentially flawed longitudinal analysis there was no indication of an attenuation of treatment effects on disability progression but, surprisingly considering the lower relapse rate in secondary progressive multiple sclerosis, there was a robust effect on relapse rate. Another way of interpreting the European SPMS NAB data as presented by Polman and colleagues is that the much higher dose of IFNB-1b (875 µg/week) given in that study, in comparison with the lower licensed doses of IFNB-1a (30–132 µg/week), acted to quench some of the neutralising activity of the antibodies. Similarly, the higher doses may be responsible for inducing high dose tolerance in a subset of the patients. These phenomena are well observed with other biologicals in which the read-outs are more objective than in multiple sclerosis—for example, coagulation in anti-factor VIII and glucose levels in anti-insulin antibody positive patients.

Polman and colleagues have misinterpreted our recommendations. We do not recommend routine screening of neutralising antibodies at present; nor the switching of treatments in NAB+ patients unless clinically justified, nor aggressive strategies to reduce or reverse the development of neutralising antibodies. We simply state that further research is necessary to assess whether these strategies are appropriate. Polman and colleagues’ concluding statement that treatment decisions should be based on clinical grounds rather than on neutralising antibody titres is entirely in keeping with our recommendations.

We disagree with Polman and colleagues’ statement that “the clinical impact of neutralising antibodies to interferon β during treatment of multiple sclerosis may be more limited and more transient than suggested in the editorial.” Short to intermediate term data (<4 years) from the relapsing multiple sclerosis studies discussed above do not support this claim, and long term clinical data (>4 years) on the effects of transient neutralising antibodies on the therapeutic efficacy of IFNB-1b do not exist to support the latter half of their claim. In addition, evidence does not exist on whether or not the phenomenon of transient high titre neutralising antibodies occurs to a similar degree in patients treated with IFNB-1a; therefore the latter half of their statement, if true, may not be applicable to patients treated with IFNB-1a.

In conclusion, clinicians cannot ignore the issue of neutralising antibodies, particularly in view of the evidence from other fields of medicine in which neutralising antibodies reduce or inhibit the efficacy of a wide range of biologicals, including type I interferons. Why should interferon treatment in multiple sclerosis be any different? G Giovannoni

Department of Neuroimmunology, Institute of Neurology, Queen Square, London WC1N 3BG, UK

Giovannoni G

Deisenhammer F

Munschauer W

References

A 1908 systematic review of the laterality of hysterical hemiplegia

Since the publication of our systematic review of the laterality of functional or medically unexplained weakness and sensory disturbance (1965–2000)1 we have come across a study from 1908 with a relative that intrigued us.

Ernest Jones, later an eminent figure in the psychoanalytic movement, published his paper in French while working as an assistant physician at the London School of Medicine.2 He reported on the cumulative analysis of 277 cases of hysterical hemiplegia described by 146 authors in 164 articles published between 1880 and 1908. Most of this material is in French and German and includes cases mentioned in doctoral theses and books.

There was no excess of left sided hemiplegia compared with right in hysteria in his analysis—54% had paralysis on the right side and 46% on the left. This was contrary to the prevailing opinion of the time1 and also disagrees with another less systematic review of older studies (covering 100 subjects, 13 publications and 6 authors between 1885–1937).3 Jones’ conclusions—that the laterality of hysterical hemiplegia has no diagnostic value—were the same as ours. His study has not been cited for at least 40 years (and probably much longer even than that). It has been neglected, like many other negative studies before and since, but it deserves recognition on this subject.

J Stone, C Warlow
Division of Clinical Neurosciences, School of Molecular and Clinical Medicine, Western General Hospital, Crewe Road, Edinburgh EH4 2RU, UK

Downloaded from http://jnnp.bmj.com/ on June 16, 2017 - Published by group.bmj.com
Resolution of psychiatric symptoms secondary to herpes simplex encephalitis

We read with interest the editorial by Kennedy et al., detailing the short-term treatment of herpes simplex encephalitis (HSE). We agree with the authors that we cannot overemphasise the seriousness of the neuropsychiatric symptoms that a number of these patients display in the long term.

We report a 55 year old woman who was diagnosed with HSE; diagnosis was confirmed with a positive PCR test for herpes simplex in the CSF and acyclovir was started the following day after presentation. After a few weeks the patient’s recovery was almost complete and she was discharged home. Six months later, there was an abrupt change when the patient developed insomnia and would sit up all night watching children’s videos; she also became hostile and confused. She was admitted to a psychiatric unit where she continued to be confused and agitated with episodes of extreme behaviour such as undressing or trying to attack staff.

MRI showed appearances consistent with severe encephalomalacia of the right temporal lobe with evidence of gliosis in the frontal and temporal lobes consistent with previous HSE. It was surprising that the EEG tracing was normal with no focal or epileptiform features.

The patient remained in the psychiatric unit for seven months during which time she failed to respond to different antipsychotic medications and she was heavily sedated. The nursing staff reported that the patient was generally confused but there were distinctive episodes when the patient would stare and then display abusive and disruptive behaviour for periods of up to an hour once or twice a day.
“fool” the patient. Govind et al seem to have already decided that this is not possible, a convenient assumption.

Further, we are concerned that Govind et al state categorically that “among patients with whiplash injuries, third occipital headache is common”. The study group from which they determine this prevalence has been reviewed elsewhere, and is wholly inappropriate for a prevalence estimate, being best described as an unusual, highly select, and heterogeneous group of subjects. We are aware that others are undertaking a study to evaluate this, but we have never encountered in any of our own studies, nor in the literature, results showing that 86% of patients obtain complete relief of pain following a sham procedure because I am never going back to a placebo controlled trial. If Dr Kwan and Dr Frieland so treat a patient because they are not satisfied to deny care to patients while they engage in purist debates about levels of evidence, we are rewarded with patients grateful for the relief that they obtain, and who report: “you must repeat the procedure because I am never going back to suffering headaches again”. If someone devises a better treatment for third occipital headache, we will adopt it. In the meantime we feel it would be dishonest of us to tell our patients there is nothing we can do for you.

In the neurological picture of the June issue (Kroon DJ, Clutterbuck RE. Coccioidiomycosis of the brain, mimicking en plaque meningioma. J Neurol Neurosurg Psychiatry 2003;74:806) the initials of the first author were reversed; his name should read as Komotor BJ.

The ordering of the authors in the letter by Soragna D, Tupler R, Ratti et al in the June issue (An Italian family affected by Nasuhakola disease with a novel genetic mutation in the TREM2 gene. J Neurol Neurosurg Psychiatry 2003;74:825–6) is incorrect, it should be as follows: D Soragna, L Papi, MT Ratti, R Sestini, R Tupler, L Montalbetti.

The ordering of the authors in the letter by De Tiège, Laureys, Goldman, et al in the July issue (Regional cerebral glucose metabolism in akinetic catatonia and after remission. J Neurol Neurosurg Psychiatry 2003;74:1003–4) is incorrect; it should read as follows: X De Tiège, J C Bier, J Massat, S Laureys, F Lotstra, J Barré, J Mendlewicz, S Goldman.

In the June issue of JNPN fig 1 of the paper by Catgili S, Oktar N, Dalbasti T, et al (Failure to detect Chlamydia pneumoniae DNA in cerebral aneurysmal sac tissue with two different polymerase chain reaction methods. J Neurol Neurosurg Psychiatry 2003;74:756–9) was incorrect. The following figure is the correct image that should have been published.

![Image](http://jnnp.bmj.com/)

Figure 1 C pneumoniae TETR PCR of clinical samples. Lanes 1 to 3, 5 to 7 clinical samples, Lanes 4 and 8 negative control (water). Lanes 9 and 11 positive control (C pneumoniae 4×10^10 and 4×10^7 CFU). Lane 10 water. Lane 12 DNA molecular weight marker (XIV, 100 bp ladder, Roche Diagnostics). (Correction to J Neuro Neurosurg Psychiatry 2003;74:756–9.)
A 1908 systematic review of the laterality of hysterical hemiplegia

J Stone, C Warlow, A Carson and M Sharpe

J Neurol Neurosurg Psychiatry 2003 74: 1163-1164
doi: 10.1136/jnnp.74.8.1163

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/8/1163

These include:

References
This article cites 2 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/74/8/1163#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/