Contralateral medial temporal lobe damage in right but not left temporal lobe epilepsy: a 1H magnetic resonance spectroscopy study

F Zubler, M Seeck, T Landis, F Henry, F Lazeyras

Background: Proton magnetic resonance spectroscopy (MRS) of the hippocampus is useful in lateralising the epileptic focus in temporal lobe epilepsy for subsequent surgical resection. Previous studies have reported abnormal contralateral MRS values in up to 50% of the patients.

Objective: To identify the contributing factors to contralateral damage, as determined by MRS, and its extension in patients with temporal lobe epilepsy.

Methods: Single voxel MRS was carried out in the hippocampus and lateral temporal neocortex of both hemispheres in 13 patients with left temporal lobe epilepsy (LTLE) and 16 patients with right temporal lobe epilepsy (RTLE). All patients had mesial temporal lobe epilepsy with hippocampal sclerosis. Controls were 21 healthy volunteers of comparable age.

Results: Consistent with previous studies, the NAA/(Cho+Cr) ratio was abnormally low in the hippocampus ipsilateral to the focus (p < 0.0001), and there were lower values in both patient groups in the ipsilateral temporal neocortex (p < 0.0001). Patients with RTLE had left hippocampal MRS anomalies (p = 0.0018), whereas the right hippocampus seemed to be undamaged in LTLE patients.

Conclusions: Unilateral mesial temporal lobe epilepsy is associated with widespread metabolic abnormalities which involve contralateral mesial and neocortical temporal lobe structures. These abnormalities appear to be more pronounced in patients with RTLE.

Proton magnetic resonance spectroscopy techniques have been used successfully over the last 10 to 15 years to confirm lateralisation in patients with evidence of lesional and non-lesional temporal lobe epilepsy. The principal signals of interest have been those from N-acetylaspartate and from creatine + phosphocreatine and choline containing compounds. Studies have shown that N-acetylaspartate reflects neuronal function or density, whereas choline and creatine concentrations correlate with glial cell density. Thus decreased N-acetylaspartate is considered to indicate neuronal loss or dysfunction, whereas increased choline and creatine suggest gliotic changes. Both conditions are present in hippocampal sclerosis. In addition, measurements of N-acetylaspartate, creatine, and choline can detect subtle tissue alterations and are consequently useful in the non-invasive localisation and lateralisation of the epileptic focus. Correct lateralisation to the side of seizure onset was found in 55% to 100% in patients with positive magnetic resonance imaging (MRI) findings or successful temporal lobe resection. Interestingly, up to 50% of the patients also had abnormalities in the contralateral temporal lobe, both in adults and children. However, factors contributing to the contralateral damage are as yet unclear.

One possible contributing factor is the side of seizure origin. There is some evidence that patients with left and right temporal foci differ with respect to several clinical variables. In a previous study we found worse psychosocial functioning in patients with right temporal foci. In the same patient group, altered contralateral hippocampal volumes were noted in those with right but not left temporal lobe epilepsy, as determined by volumetric analysis. Postoperative examination of the patients revealed that the group with left sided temporal resections showed progressive impairment of verbal memory, whereas the group with right sided resections had better recovery or less memory loss preoperatively. In another study, patients with right mesial temporal lobe epilepsy also showed verbal memory impairment, indicating bilateral functional impairment, as compared with patients with left mesial temporal lobe epilepsy. Taking these observations together, the right temporal lobe seems to act more bilaterally than the left, either in terms of recruitment of contralateral resources or in terms of affecting contralateral structures.

Our aim in the present study was to determine whether these differential (dys)functional patterns were reflected in contralateral metabolic changes, and if so, which structure—hippocampal or neocortical temporal—was secondarily affected.

METHODS

Subjects

Our study group consisted of 29 consecutive patients with temporal lobe epilepsy, referred to our laboratory for evaluation for surgical treatment. To minimise possible variations resulting from different histopathological findings, we only studied patients with temporal lobe epilepsy associated with unilateral hippocampal atrophy. The assessment of the patients included continuous video EEG monitoring, structural high resolution MRI, positron emission tomography (PET), and neurological and neuropsychological examination. Clear localisation of the focus was achieved in all cases. Thirteen patients had left temporal lobe epilepsy (LTLE) and 16 had right temporal lobe epilepsy (RTLE). In six patients (three LTLE, three RTLE), contralateral EEG anomalies were noted; their frequency was calculated to be < 30%. The volume loss was confirmed in all cases by volumetric measurements.

The mean (SD) age of the patients was 32.8 (11.8) years, age of onset 11.1 (8.4) years, and duration of epilepsy 21.8 (12.7) years (Table 1). Although the RTLE patients tended to have a greater seizure frequency than the LTLE patients, this difference did not reach significance. Of the 29 patients, 26...
were operated on and tissue obtained was examined for histo-
logical abnormalities (three selective amygdalo-hippocam-
pectomies, 23 partial temporal lobectomies). The diagnosis of
hippocampal gliosis and sclerosis was confirmed in all cases.
In the temporal neocortex, one specimen was considered nor-
mal, four showed neuronal heterotopias, and 17 revealed
gliotic changes. Twenty eight of the 29 patients became
seizure-free; the remaining patient had a significant reduction
in seizure frequency (by more than 80%). The follow up was
over a period of 4 to 74 months, mean 38.3 months.

Twenty one healthy volunteers of comparable age served as
controls (table 1). There was no significant age difference
between the controls and patient groups.

Magnetic resonance spectroscopy
Proton magnetic resonance spectroscopy (1H-MRS) was
undertaken on a 1.5 tesla Eclipse system (Marconi Medical
Systems, Cleveland, Ohio, USA) with a standard head coil. The
1H-MRS measurements consisted of long echo time PRESS
sequences (repetition time (TR)/echo time (TE)/number of
averages (NAV): 1600 ms/270 ms/256), centred on the hippocam-
pi (voxel volume 4.6 ml) and the temporal lobes (voxel vol-
ume 9.4 ml). Figure 1 shows the placement of the single voxel
in the mesial and lateral temporal lobe. Owing to shimming
issues and to avoid contamination from subcutaneous fat, the
voxel of the temporal lobe was centred on the superior and
middle temporal sulcus, at the mid-portion of the temporal
lobe. The voxel encompassed grey and white matter with the
proportion of grey matter being on average 55%.

Data reduction was done using SAGE spectroscopy analysis
software (General Electric Medical Systems, Fremont, Califor-
nia, USA) and consisted of low frequency filtering, 4 Hz exponen-
tial apodisation, zero filling, Fourier transform, automatic
zero order phase correction, and baseline correction for dc off-
set. The peak amplitudes were derived after fitting of the
spectra using the Marquardt algorithm of the SAGE program.
The metabolites assessed by this method were the choline
containing compounds (Cho), the creatine and phosphocreat-
ine (Cr), and the N-acetylaspartate (NAA). The ratio of peak
amplitudes (NAA/(Cho+Cr)) is reported.

Statistics
MRS data were collected before surgery by a magnetic
resonance technologist. The analysis was carried out blinded
to the results of the presurgical investigation. The intensity
ratio NAA/(Cho+Cr) was used as an index of spectral abnor-
mality. An analysis of variance (ANOVA) was undertaken for
comparison of the measured structure (hippocampus or
lateral temporal neocortex) and the side of pathology (left v
right, or ipsilateral v contralateral, respectively) between all
three groups (control group, LTLE, RTLE). Two tailed t
tests were used for detailed analysis. A Pearson’s correlation
coefficient test was done for correlation of metabolite indices
with clinical variables such as age or duration of epilepsy, or
between metabolite measurements from different structures

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Clinical details of patients and controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls</td>
</tr>
<tr>
<td>n</td>
<td>21</td>
</tr>
<tr>
<td>Age (years)</td>
<td>28.9 (11.4)</td>
</tr>
<tr>
<td>Age of onset (years)</td>
<td>–</td>
</tr>
<tr>
<td>Duration of epilepsy (years)</td>
<td>–</td>
</tr>
<tr>
<td>Seizure frequency*</td>
<td>–</td>
</tr>
</tbody>
</table>

Values are mean (SD).
*Seizures/month, including complex partial and secondary
generalised seizures.
LTLE, left temporal lobe epilepsy; RTLE, right temporal lobe epilepsy.

Figure 1 Voxel placement in the lateral and mesial structures of the right temporal lobe of a volunteer.
within the same patients. Comparisons within the same patient group were done using dependent t tests. A probability (p) value of < 0.05 was considered significant for ANOVA and t tests, while a p value of < 0.01 was required for statistical significance in correlation comparisons.

RESULTS

Controls

The average NAA/(Cho+Cr) ratios in the hippocampal and lateral temporal neocortex are shown in table 2. No significant correlations were found either between age and hippocampal or neocortical measurements, or between left and right hippocampi or left and right temporal neocortex ratios.

Patients

Although the patients with RTLE tended to have a greater seizure frequency, the difference was not significant (p = 0.08). Moreover, the two groups did not differ with respect to any other clinical variable and are thus considered comparable, except for focus lateralisation.

ANOVA across all three groups, both sides, and both voxel sites revealed a highly significant group effect (F(2,47) = 44.92; p < 0.0001) because of smaller values in the patient groups. There was also a significant structure effect (F(1,47) = 396.57; p < 0.0001) owing to overall higher MRS ratios in the temporal neocortex. A group by structure interaction also became evident (F(2,47) = 4.96; p < 0.011): not only were the hippocampal NAA/(Cho+Cr) ratios smaller than the neocortical values in all three groups, but there also seemed to be even smaller values in the RTLE group. The significant group by side interaction (F(2,47) = 41.02; p < 0.0001) was caused by diminished NAA/(Cho+Cr) ratios predominantly ipsilateral to the focus in the patient groups. The major findings were not affected by age, frequency of generalised tonic-clonic seizures, duration of epileptic disorder, or overall seizure frequency as a covariate.

With regard to the values obtained in the contralateral temporal lobe, a significant difference emerged between LTLE and RTLE. While the NAA/(Cho+Cr) ratio of the right hippocampus in the LTLE patients did not differ from the control group, the left hippocampus in the RTLE patients showed markedly smaller values (df = 35, t = 3.38, p = 0.0018; fig 2). With respect to the neocortical measurements, no such differential effect was noted, and in LTLE and RTLE abnormally low indices were obtained bilaterally but with the ipsilateral neocortex predominating (table 2).

Correlation analysis was done between clinical variables such as age, age of onset, duration of disease, seizure frequency, frequency of generalised tonic-clonic seizures, and NAA/(Cho+Cr)1 indices in the left and right hippocampus and temporal neocortex. This was carried out for both patient groups combined and for each patient group separately. We also investigated a possible effect of bilateral unilateral EEG anomalies. No significant association was found. Moreover, in the patient groups, we did not observe a significant correlation between the hippocampal and neocortical NAA/(Cho+Cr) within the same temporal lobe or between homologous structures in the two temporal lobes. In particular, for the left hippocampal values in the RTLE group, no meaningful association with any other clinical or metabolic variable was noted.

DISCUSSION

In this study we were interested to explore a possible differential effect of left and right mesial temporal foci in an otherwise homogeneous patient group. Consistent with previous studies, we found a highly significant diminution of the NAA/(Cho+Cr) peak ratios in the affected ipsilateral hippocampus in patients with chronic temporal lobe epilepsy and hippocampal sclerosis compared with healthy controls. We also found major differences in the lateral temporal cortex, again supporting previous observations of extrahippocampal changes in patients with temporal lobe epilepsy.10–13 These changes seemed to be independent of the mesial temporal lobe abnormalities, as no correlation was found between lateral and mesial intensity ratios. In contrast to other observations,20,21 we did not find any relation with the frequency of generalised tonic-clonic seizures in either patient group. As in previous reports, we were unable to show an association with total seizure frequency or with the duration of the seizure disorder.20,21 Thus it appears unlikely that the neocortical changes are just a “secondary” effect of the

![Figure 2](http://jnnp.bmj.com/)

Table 2 NAA/(Cho+Cr) measurements in both temporal lobes of the patient and control groups

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>LTLE</th>
<th>p Value</th>
<th>RTLE</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>21</td>
<td>13</td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Left hippocampus</td>
<td>0.76 (0.067)</td>
<td>0.60 (0.086)</td>
<td>0.00001</td>
<td>0.69 (0.073)</td>
<td>0.0018</td>
</tr>
<tr>
<td>Left temporal neocortex</td>
<td>1.12 (0.094)</td>
<td>0.86 (0.17)</td>
<td>0.00001</td>
<td>1.0 (0.11)</td>
<td>0.0015</td>
</tr>
<tr>
<td>Right hippocampus</td>
<td>0.75 (0.052)</td>
<td>0.72 (0.052)</td>
<td>NS</td>
<td>0.58 (0.088)</td>
<td><0.00001</td>
</tr>
<tr>
<td>Right temporal neocortex</td>
<td>1.13 (0.086)</td>
<td>0.99 (0.091)</td>
<td>0.00001</td>
<td>0.82 (0.14)</td>
<td><0.00001</td>
</tr>
</tbody>
</table>

Values are mean (SD); p values refer to comparison with the control group. LTLE, left temporal lobe epilepsy; NAA, RTLE, right temporal lobe epilepsy.
hippocampal focus or are related to the duration and severity of the epilepsy. Moreover, in all but one patient the histopathological analysis of the temporal neocortex revealed tissue abnormalities suggesting that the low intensity values obtained from this brain region indeed reflected structural changes.

We also found MRS abnormalities in the contralateral temporal lobe, in accordance with previous observations.22 The significance of the abnormal values in the contralateral temporal lobe is uncertain. It has been reported that abnormal contralateral values may improve postoperatively23–25 and that bilateral low intensity values do not preclude a good surgical outcome,19 suggesting that decreased N-acetylaspartate values or N-acetylaspartate dependent ratios reflect only functional (and possibly transient) changes.26 However, presurgical spectra of the resected temporal lobe are also abnormally low and are associated with “real” pathological tissue, as determined by postoperative histological analysis. Thus contralaterally abnormal ratios may be an underlying cause in those patients who do not show postoperative recovery.26 In a necropsy study of patients with temporal lobe epilepsy, abnormalities in both hippocampi were found in 30% of the cases,27 indicating that contralateral low hippocampal and neocortical NAA/(Cho+Cr) values indeed represent tissue abnormalities, although they might not be as epileptogenic as in the resected side. In a follow up study of a patient suffering from occipital focal status epilepticus, N-acetylaspartate was lowest on day 4 after status onset, recovered partially over the next months, but remained low even after one year and despite good clinical seizure control.28 This observation suggests that a certain quantity of N-acetylaspartate loss is reversible and thus of transient character, but that another portion of the decrease is permanent and reflects underlying damage, although not necessarily related to clinically evident seizure activity.

The differential effect on the contralateral hippocampus of a right compared with a left temporal focus, as shown by MRS, has not yet been described. Other lines of evidence, however, suggest a differential effect of a right versus left mesial temporal focus. Neuropsychological studies in patients with temporal lobe epilepsy agree that patients with LTE more often encounter a significant postoperative verbal memory decline, whereas patients with RTLE have less or no decline in visuo-spatial memory postoperatively,29–31 indicating successful recruitment of extrahippocampal or extratemporal resources in RTLE to compensate for the deficit. In the prospective situation patients with RTLE suffer decreased verbal memory deficits compared with the controls, indicating additional left hippocampal dysfunction, although their performance was still better than that of LTE patients.32

Two explanations of the differential left-right effect are possible: first, that there are established pathways between the right and left hemispheric structural changes, existing before the onset of epilepsy and unrelated to the epilepsy; and second, that the differential projection pathways are non-physiological and are related to the pathological activity in the (right) mesial temporal lobe structures (secondary epileptogenesis).23,24 MRS data were not correlated with clinical variables such as duration of disease or seizure frequency, which would be expected if they were entirely dependent on the activity of the focus. However, normalisation of metabolic variables in the contralateral temporal lobe postoperatively lends support to the concept of secondary epileptogenesis.23,24 Arguments for the first hypothesis come from paediatric studies. The normal development of the right hemisphere determines left hemispheric function to some degree: children with early right hemispheric lesions may have similar problems in their verbal skills as children with early left hemispheric lesions, who do not show the adult pattern of aphasia after acquired (unilateral) left perisylvian lesions.33–36 These observations suggest that the right hemisphere contributes to the development of left hemispheric function. Moreover, the right hemisphere and its functions (for example, face recognition) develop earlier that those assigned to the left hemisphere, as confirmed by a recent functional imaging study.37 Putting all the findings together, the right hemisphere seems to have a “nurturing” function for the development of the left hemisphere, which suggests the presence of specialised, physiological, right to left interhemispheric propagation pathways. Our findings indicate the existence of such a pathway on the hippocampal level but not on the neocortical level.

ACKNOWLEDGEMENTS

We are grateful to Dr G Pizzolatto for expert histopathological analysis and Dr S Zaimi MD for all the discussions that helped to improve the manuscript. Supported by the SNF grants No 3100-57112.99, 3100-05293.97, and 3200-052991.97.

Authors’ affiliations
F Zubler, M Seeck, Laboratory for Presurgical Epilepsy Evaluation Unit, “Functional Neurology and Neurosurgery” Programme of the Universities Lausanne and Geneva, Switzerland
T Landis, Department of Neurology, University Hospital of Geneva, Geneva, Switzerland
F Henry, F Lazeyras, Department of Radiology, University Hospital of Geneva

Competing interests: none declared

REFERENCES

Acute childhood hemiplegia

A cute hemiplegia in childhood has many causes. Many are vascular, some follow trauma or a variety of encephalitides. Carotid and other basal vascular occlusions may result from cardiac emboli, angiomata, small vessel disease, or in some cases from an arteritis. Most children who begin with prolonged focal or generalised epilepsy are left with significant motor deficits, hyperkinetic behaviour, and many with recurrent fits and cognitive defects.

"A previously healthy child without hereditary predisposition suddenly became ill from a few months to 3 years of age. The aetiology of the illness remains unknown or is sought in a simultaneously occurring infectious disease. The initial symptoms may be violent, with fever, convulsions, or vomiting, or may be slight and insignificant. . . speech impediment and aphasia are frequent and usually temporary; hemianopsia and paralysis of the eye muscles is rare. . . mental disturbance of varied degree is usually apparent. Sooner or later, after the onset of the disease, epileptic seizures occur." Said Freud also here portrayed the bony hypertrophy of the frontal bone and orbits associated with the subsequent cerebral atrophy (the Dyke-Davidoff-Masson skull described in 1933).

References
Contralateral medial temporal lobe damage in right but not left temporal lobe epilepsy: a 1H magnetic resonance spectroscopy study

F Zubler, M Seeck, T Landis, F Henry and F Lazeyras

J Neurol Neurosurg Psychiatry 2003 74: 1240-1244
doi: 10.1136/jnnp.74.9.1240

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/9/1240

These include:

References
This article cites 36 articles, 15 of which you can access for free at:
http://jnnp.bmj.com/content/74/9/1240#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epilepsy and seizures (846)
- Radiology (1747)
- Radiology (diagnostics) (1309)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/