Hypothalamic amnesia and frontal lobe function disorders after Langerhans cell histiocytosis

Langerhans cell histiocytosis (LCH), a rare disease previously known as histiocytosis X, is characterised by abnormal cell proliferation. If the CNS is invaded, the hypothalamus is the typical site location. There are virtually no neuropsychological data on hypothalamic LCH sequelae. Memory disorders in the context of posterior but also anterior hypothalamic lesions, regardless of the aetiology, have in most cases been attributed to the involvement of the mammillary bodies (MB). However, Ptak et al interpreted a case, acknowledging that “Damage of the anterior hypothalamus, rather than the mammillary bodies, may [... have been responsible for [... the observed] confabulatory amnesia” (page 1600). An interesting question is whether neuropsychological deficits are secondary to hypothalamic damage in itself or to a disconnection syndrome. The latter is based on the bilateral hypothalamic nucleus—widespread brain complex connections. Two subsystems are of particular interest in the present case, the hippocampus-fornix-hypothalamus-MB circuit, and the amygdalostria terminals plus caudate nucleus-hypothalamic circuit.

We report the case of a patient who presented with hypothalamic LCH and underwent thorough neuropsychological, radiological, and metabolic assessments.

Case report

A right handed woman (date of birth 1931), was admitted (March 2000) to the Hôpitaux Universitaires’ Neurology Unit (Strasbourg, France) complaining of memory deficits. In 1990, bronchopulmonary biopsies had led to the diagnosis of LCH. In 1992, she was diagnosed as having hepatic and hypothalamic LCH, the first being confirmed by biopsy, the second suggested by diabetes insipidus. Endocrinological assessment showed signs of anterior pituitary dysfunction. Standard biological and physical examinations were normal. MRI showed a bilobulated hypothalamic tumour extending from the optic chiasm to the posterior part of the third ventricle floor and towards the pituitary stalk. It displaced the left thalamus very slightly and compressed both MB, which became non-identifiable. There was no abnormal signal in the thalamus and the mesial temporal regions were morphologically normal. Cortical atrophy was normal for her age. MRI follow up (1998, 2000, 2001), showed stable lesions (20x18x14 mm; fig 1). An 18F fluoroexoxyglucose resting positron emission tomography (PET) scan (December 2000) revealed small hypometabolic areas in the ventromedial prefrontal cortices, left superior frontal gyrus, parietal lobe, caudate nucleus and upper brain stem, plus a pronounced hypothalamic hypermetabolism (fig 2).

Neuropsychological investigation (July 2000)

Written informed consent was obtained. The patient was disoriented for time only. Verbal IQ (90) and Performance IQ (96), language, constructional praxis, visuoperceptual, and spatial abilities were normal. Performance on antero- and retrograde episodic and semantic memory tests was severely impaired. Likewise, scores on six tests sensitive to frontal lobe dysfunction were uniformly defective. Moreover, she had recently become “hostile and irritable”. Consequently, her husband completed a personality change scale (J Barrath, et al. 25th INS meetings, Orlando, Florida, February 1997). The comparable difference between her past (63) and present (110) behavioural characteristics was compatible with a frontal lobe disorder.

Comment

Secondary to hypothalamic LCH, our patient developed amnesia, dysexecutive syndrome, and personality alteration, in an otherwise normal context.

Ptak et al described a similar case (amnesia and frontal lobe dysfunction) in the context of circumscribed hypothalamic lesions. The postmortem diagnosis of sarcoidosis did not exclude the possibility of LCH. As the patient’s lesion involved mostly the medial hypothalamus, the authors accounted for the symptoms in terms of the strong reciprocal connections with the anterior limbic structures. Further studies have demonstrated connections from the medial prefrontal cortex to the anterior and ventromedial hypothalamus and those from the orbital region to the lateral hypothalami.
A 46 year old woman presented with painless and progressive right sided visual failure for two years. On admittance, visual acuity of the right eye was 0.05. In addition, there was an afferent pupillary defect, and swelling of the optic disc. Otherwise, the neurological examination was normal. Cranial magnetic resonance imaging (MRI) revealed a homogeneously enhancing, fusiform tumour, originating from the upper part of the right optic nerve sheath and compressing the nerve below.

Figure 1 Sagittal T1 weighted magnetic resonance imaging, angulated along the course of the right optic nerve (time of repetition 500 ms, time of echo 16 ms, slice thickness 4 mm), following Gd-DTPA administration. It shows a homogeneously enhancing, 5 × 10 mm fusiform tumour, originating from the upper part of the right optic nerve sheath and compressing the nerve below.

Figure 2 Computed perimetric examination of the right eye: (A) before treatment; (B) after 10 months of continuous treatment with hydroxyurea (20 mg/kg body weight/day). Black squares, absolute scotoma; crosses, relative scotoma.

Case report
A 46 year old woman presented with painless and progressive right sided visual failure for two years. On admittance, visual acuity of the right eye was 0.05. In addition, there was an afferent pupillary defect, and swelling of the optic disc. Otherwise, the neurological examination was normal. Cranial magnetic resonance imaging (MRI) revealed a homogeneously enhancing, fusiform tumour (5 × 10 × 6 mm; volume 0.15 cm³) originating from the upper part of the right optic nerve sheath and compressing the optic nerve. The tumour showed an isointense signal to grey matter on T1 and T2 weighted images, and was diagnosed as a meningioma (fig 1A). Latency of the P100 wave of visual evoked potentials of the right eye was increased to > 200 ms, and computed perimetric examination showed a severe restriction of the peripheral visual field of the right eye (fig 2A). There were no clinical or radiological features of neurofibromatosis type 1 or 2. The patient was not on regular medication.

Treatment was initiated with hydroxyurea, 20 mg/kg body weight/day orally. Four months after initiation of treatment the patient reported a considerable improvement of vision. No adverse events were noted apart from mild hair loss. Visual acuity improved to 0.5. After seven months of continuous treatment, visual acuity was 0.7, and after 10 months, 0.8. At this time, P100 latency of visual evoked potentials was normal and computed perimetric examination showed a significant recovery of visual field (fig 2B). However, cranial MRI showed no detectable change in tumour size (volume 0.15 cm³; fig 1B). At the time of writing the disease had remained stable for a further 18 months now.

Comment
This case shows the clinical value of hydroxyurea in the management of optic nerve sheath meningiomas, although there was no detectable decrease in tumour size. There is increasing evidence for the benefit of radiotherapy in optic nerve sheath meningiomas. Andrews et al reported an improvement in vision in 10 of 24 cases (42%) after treatment with fractionated stereotactic radiotherapy alone. A comparison of long term visual outcome by Turbin et al showed better results for patients treated by conventional multiport or conformal planned delivery of radiotherapy than by surgery plus radiation, surgery alone, or observation during the follow up period.

However, radiotherapy is associated with relevant treatment related morbidity (13% and 33.3% in two studies). As follow up of the available case series is limited and these tumours may pursue a stable course for many years, the appropriate time for therapeutic intervention is unclear. In the present case, a profound deterioration of visual acuity led to the initiation of treatment. Hydroxyurea may be a reasonable therapeutic alternative to radiotherapy. Side effects of hydroxyurea such as myelosuppression, raised liver enzymes, and rashes are generally mild, easy to monitor, and reversible.

As the neuroradiological characteristics were unequivocal in our case, and as histological verification of optic nerve sheath meningiomas carries a high risk of irreversible damage to the optic nerve, the diagnosis was made purely by radiological means. This approach is in accordance with current standard of diagnostic measures of optic nerve sheath meningiomas based on clinical details and high quality neuroimaging without pathological confirmation.

References
1 Andrews DW, Faroozan R, Yang BP, et al. Fractionated stereotactic radiotherapy for the treatment of optic nerve sheath meningiomas: preliminary observations of 33 optic nerves in various series. We report a patient with a meningioma of the optic nerve sheath and nearly complete visual loss who was successfully treated with hydroxyurea alone.
Absence, with no pathological reflexes. The CSF on admission (day 1) showed complete ophthalmoplegia, but there was without reaction to light. She showed isolated internal ophthalmoplegia. At 15 months after the onset, she had almost recovered except for areflexia and slight restriction of ocular abduction of the both eyes.

Case report

The patient was a 19 year old woman. At age 10, she visited a neurologist because of diplopia and an unstable gait two weeks after a respiratory tract infection. Neurological examination showed ophthalmoplegia, dilated pupils with sluggish pupillary responses, areflexia, and cerebellar ataxia. Laboratory examinations including nerve conduction studies were normal except for a slight increase in CSF protein (40 mg/dl) without pleocytosis. Within three months, her condition gradually improved and she was discharged without a neurological deficit except for persistent areflexia.

At age 17, she noticed mild diplopia, which gradually got worse. She visited our hospital with the complaint of slowly progressive diplopia. Although ocular movements were not restricted, her pupils were dilated bilaterally with reaction to light. She showed areflexia and slight ataxia without pathological reflexes, and cerebellar ataxia. Laboratory examinations including nerve conduction studies were normal except for absence of the F wave. As external ocular movement was not restricted, progressive diplopia might reflect pupillary abnormalities; diplopia has been also observed in isolated internal ophthalmoplegia without external ophthalmoplegia associated with anti-GQ1b IgG antibody. In addition, chronic external ophthalmoplegia has been observed in isolated anti-GQ1b IgG antibody, although we could not examine this antibody during that period. This is the first report of Bickerstaff's brain stem encephalitis in our patient, which suggests that chronic internal ophthalmoplegia may be associated with anti-GQ1b IgG antibody, although we could not examine this antibody during that period. This is the first report of Bickerstaff's brain stem encephalitis in our patient, which suggests that chronic internal ophthalmoplegia may be associated with anti-GQ1b IgG antibody, although we could not examine this antibody during that period.

Comment

Our patient showed three different conditions of the illness at three different periods between the ages 10 and 19: first, acute onset of ophthalmoplegia, ataxia, and areflexia at age 10, which is a typical presentation of the Miller Fisher syndrome; second, chronic progressive diplopia associated with internal ophthalmoplegia from age 17; and third, acute onset of complete ophthalmoplegia, ataxia, marked drowsiness, and respiratory paralysis with extensor plantar responses and EEG abnormalities at age 19.

We diagnosed the third episode as Bickerstaff's brain stem encephalitis, because she showed transient central nervous system involvement (drowsiness, respiratory disturbance, positive plantar responses, and EEG abnormalities) in addition to the triad of the Miller Fisher syndrome. High anti-GQ1b and anti-GT1a antibody titres decreased below the cut off level by day 55 after the onset. Nerve conduction studies became normal by day 78. Fifteen weeks after the onset, she had almost recovered except for areflexia and slight restriction of ocular abduction of the both eyes.

References

Sydenham’s chorea may be a risk factor for drug induced parkinsonism

Sydenham’s chorea, the most common cause of acquired chorea in childhood, is a delayed complication of group A β-haemolytic streptococcal infection. It is thought to be caused by antibodies induced by streptococci which cross react with basal ganglia antigens. Despite the decrease in Sydenham’s chorea in developed countries, there is a renewed interest in this condition because of the hypothesis that a similar mechanism may play a role in the pathogenesis of a subset of patients with tics and other neuropsychiatric disorders.

The treatment of Sydenham’s chorea is based on the combination of penicillin and anticholinergic drugs (valproic acid and/or dopamine antagonists). At the movement disorders clinic of the Federal University of Minas Gerais (MDC-UFGM), located in an area where Sydenham’s chorea remains endemic, we have been struck by the occurrence of drug induced parkinsonism among patients with Sydenham’s chorea. We therefore
decided to investigate the incidence of this complication in a cohort of patients with the condition, as well as in a group of subjects with Tourette's syndrome. The latter is an interesting choice for a control group as Tourette's syndrome and Sydenham's chorea share certain clinical features—for example, childhood onset, the constellation of motor and behavioural disturbances, and the response to neuroleptic agents.

Methods
In the first part of the study we undertook a retrospective review of the case records of patients with Sydenham's chorea and Tourette's syndrome followed up at the MDC-UFGM from July 1993 to October 2002, looking for drug induced parkinsonism. We then compared the chlorpromazine equivalent dose during treatments with Tourette's syndrome, Sydenham's chorea, and drug induced parkinsonism. For each patient with Sydenham's chorea we randomly selected two age matched subjects with Tourette's syndrome. Sydenham's chorea was diagnosed according to a modified Jones criteria, and the Diagnostic and Statistical Manual of Mental Diseases, fourth edition (DSM-IV) criteria were used to identify patients with Tourette's syndrome. Drug induced parkinsonism was diagnosed when patients exposed to neuroleptics were found to have bradykinesia and at least one of the following: rigidity, tremor, postural instability. All patients were seen by one of us (FC). Differences were considered statistically significant at a probability (p) value of < 0.05.

Results
Sydenham's chorea was diagnosed in 91 patients and Tourette's syndrome in 97 during the study period. Five patients (5.5%) with Sydenham's chorea (mean SD age, 13.4 (2.1) years), of whom four were female, developed drug induced parkinsonism, whereas this complication was not identified in the Tourette's syndrome group (p = 0.03). Fisher's exact test). Parkinsonism was characterised by the presence of bradykinesia and rigidity, and postural instability. None of the subjects, except one, was identified in three, and postural instability was not observed. The mean cumulative chlorpromazine equivalent dose used in the patients with Sydenham's chorea when they developed parkinsonism was 16518 (6254) mg. The onset of drug induced parkinsonism occurred after a mean exposure of 88.2 (65.8) days.

The cumulative chlorpromazine equivalent dose in the 10 Tourette's syndrome patients (two female; mean age 13.5 (1.1) years (p = 0.26 vs Sydenham's chorea)) during a three month period was 19575 (6529) mg (p = 0.76 vs Sydenham's chorea). At the time of the onset of drug induced parkinsonism the mean chlorpromazine equivalent dose in the Sydenham's chorea patients was 176.6 (95.5) mg; in the Tourette's syndrome group the figure was 217.5 (220.0) mg (p = 0.05, paired t test).

Comment
We showed that 5.5% of our patients with Sydenham's chorea developed drug induced parkinsonism during treatment with neuroleptics, while this complication was not observed in a cohort of Tourette's syndrome patients of the same body weight. There are several possible explanations for this. First, the patients with Sydenham's chorea might have received a higher dose of neuroleptics. This hypothesis is ruled out by the finding that 10 randomly selected, age matched Tourette's syndrome patients and the five Sydenham's chorea patients with drug induced parkinsonism were treated with a similar cumulative chlorpromazine equivalent dose during the three month period when the latter developed parkinsonism. One may argue that although both groups received a similar cumulative dose of neuroleptics in the time between the start of treatment and the onset of drug induced parkinsonism, the patients with Sydenham's chorea could have been exposed to a higher dose of dopamine receptor blocking drugs at the time when they developed parkinsonism. However, this was not the case because if anything the mean dose of neuroleptic in the Sydenham's chorea group. Although this drug has been implicated in the development of drug induced parkinsonism, this complication has only been described in adults treated for a period of 12 months or more.3 A third and also unlikely explanation is the overrepresentation of female patients in the Sydenham's chorea group; however, recent studies have consistently failed to identify sex as a risk factor for drug induced parkinsonism.4 Our results thus support the conclusion that in comparison with Tourette's syndrome, patients with Sydenham's chorea are at greater risk of developing drug induced parkinsonism.

Our study has limitations. First, it is a retrospective investigation of patients seen at a tertiary referral centre. This approach can lead to false positive associations, particularly in studies of disease clustering.6 However, this limitation is minimised by the use of a control group of Tourette's syndrome patients referred to the MDC-UFGM by the same attending neurologist. Second, we were not blinded to the clinical status of the patients. Although this would have been ideal, to have remained blinded to this information would have been impossible because of the obvious phenomenological differences between Sydenham's chorea and Tourette's syndrome.

We hypothesise that the increased susceptibility of patients with Sydenham's chorea to develop drug induced parkinsonism reflects an underlying nigro-striatal dysfunction produced by cross reactive streptococcus infected antibodies circulating in the sera of Sydenham's chorea patients not only recognise antigens of the basal ganglia but also CNS myelin, causing acute disseminated encephalomyelitis.7 It is thus possible that the anti-basal ganglia antibodies also cross react with neuromes of the substantia nigra.

The results of our study have two implications. First, there is a need for caution when treating patients with Sydenham's chorea with dopamine receptor blocking drugs. Second, as patients with Sydenham's chorea and Tourette's syndrome respond differently to neuroleptics, this weakens the hypothesis that similar mechanisms are involved in the pathogenesis of these conditions.

A L Teixeira, F Cardoso, D P Maio, M C Cunningham
Movement Disorders Clinic, The Federal University of Minas Gerais, Av Pasteur 99/1107, 30150-290 Belo Horizonte MG, Brazil

Correspondence to: Professor Francisco Cardoso; cardosof@metallink.com.br

References

Comparison of the tendon and plantar strike methods of eliciting the ankle reflex
Little work has evaluated the various ways of eliciting the ankle reflex. A previous study of elderly patients with normal reflex, found greater intraobserver and interobserver agreement with the plantar compared with the tendon strike method.3 Other studies showed that the reflex was best elicited in the kneeling position but moving comatose patients can be impossible or lengthy.4 We compared the reliability of the plantar and tendon strike methods of eliciting the ankle reflex in different disease states by examiners with different skill levels.

Four patients with pathologically brisk reflexes, five with reduced/absent reflexes, and nine subjects with normal reflexes were screened from examiners so that only those with normal reflexes remained. All patients had underlying scars, wasting, or pes cavus. Subjects were examined by 13 examiners (four female; mean age 30 (9) years) who were screened for tendon and plantar reflexes, five with reduced/absent reflexes, and nine subjects with normal reflexes, five with reduced/absent reflexes, and nine subjects with normal reflexes.

...
Table 1

(A) Sensitivity of tendon and plantar strike methods including \(\kappa \) coefficient of interobserver agreement
(B) Intraobserver agreement between two tests of each method shown as the percentage (95% CI) of times that identical results were obtained. The \(\kappa \) coefficient (standard error) shows response agreement for the two test sessions for each method.

<table>
<thead>
<tr>
<th></th>
<th>% Correct reduced/absent (95% CI)</th>
<th>% Correct normal (95% CI)</th>
<th>% Correct brisk (95% CI)</th>
<th>(\kappa) (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tendon strike</td>
<td>Tendon strike</td>
<td>Tendon strike</td>
<td></td>
</tr>
<tr>
<td></td>
<td>81.1 (64.8 to 92.0)</td>
<td>92.3 (64.0 to 99.8)</td>
<td>92.3 (64.0 to 99.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67.7 (45.4 to 69.4)</td>
<td>63.2 (38.4 to 83.7)</td>
<td>63.2 (38.4 to 83.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.0 (19.4 to 57.6)</td>
<td>61.5 (31.6 to 86.1)</td>
<td>61.5 (31.6 to 86.1)</td>
<td>0.36 (0.06)</td>
</tr>
<tr>
<td></td>
<td>0.56 (0.10)</td>
<td>0.57 (0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Subjects reduced/absent</td>
<td>Subjects normal</td>
<td>Subjects brisk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students</td>
<td>Clinicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tendon 1st and 2nd</td>
<td>Tendon 1st and 2nd</td>
<td>Tendon 1st and 2nd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>86.5 (71.2 to 95.5)</td>
<td>81.1 (64.8 to 92.0)</td>
<td>82.3 (64.0 to 99.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67.6 (55.4 to 74.8)</td>
<td>64.8 (52.5 to 75.8)</td>
<td>67.0 (54.3 to 77.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>66.7 (46.0 to 83.5)</td>
<td>61.5 (31.6 to 86.1)</td>
<td>62.3 (46.0 to 99.8)</td>
<td>0.53 (0.07)</td>
</tr>
<tr>
<td></td>
<td>0.59 (0.10)</td>
<td>0.59 (0.10)</td>
<td>0.66 (0.09)</td>
<td></td>
</tr>
</tbody>
</table>

Correspondence to: Dr C E Clarke, Department of Neurology, City Hospital, Dudley Road, Birmingham B18 7QH, UK, c.e.clarke@bham.ac.uk
Competing interests: none declared.

References

Mirror movements of the non-affected hand in hemiparkinsonian patients: a reflection of ipsilateral motor overactivity?

Mirror movements may result from a primary motor efferent system dysfunction with secondary motor reorganisation. A profound dysfunction of the motor pathways has been reported in Parkinson’s disease (PD) during execution of motor tasks. Recent PET studies have demonstrated overactivation of ipsilateral motor areas in hemiparkinsonian patients. However, the clinical expression of ipsilateral cortical activation was not specifically investigated in previous reports. In this study, we explored the presence of mirror movements (MM) during standardised unilateral hand tasks in a series of 21 hemiparkinsonian patients.

Patients were divided into two groups: de novo patients (n=11), age 53.2 (7.5) years (mean (SD)), duration of evolution 1.8 years (range: 1–5 years), UPDRS III motor score 12 (5.7), affected side: left n=5, right n=6; and treated patients (n=10), age 59.8 (7.6) years, duration of evolution 3.7 (1.8) years (range: 2–7 years), UPDRS III motor score 14 (7.5), affected side: left n=4, right n=6, mean daily dose of levodopa: 450 mg (range: 300–900 mg), improvement of motor disability >40% (range: 40%–80%). Evaluation was performed as follows: for de novo patients, before treatment; for the treated patients, in the “off” condition after at least 12 hours withdrawal of antiparkinsonian treatment (levodopa). Patients were not tested in the “on” condition, to avoid confusion between dyskinesia and MM. They were compared with 21 age matched normal subjects, age 56.4 (10.8) years.

Activation tasks
Subjects were told to hold their hands in the air with the elbows flexed and to perform a voluntary movement with one hand while the other hand was relaxed. Each hand was tested separately in the following four tasks performed 10 times as rapidly as possible with the widest amplitude: (1) repetitive flexion/extension movements, (2) opening and closing of the hand, (3) finger tapping (thumb and index finger), (4) flexion-extension movements of the wrist. Tasks 1 to 3 correct items 23 to 25 of the UPDRS III, respectively.

Each task was scored as follows: 0= no MM, 1=MM (that is, the presence of repetitive unintentional contralateral movements that mimic totally or partially the intended movement). The “MM score” was the combined score for the task, for each side (maximum 4).

Activation analysis between the “MM score” and the UPDRS motor score.

In 80% of the de novo patients and 90% of the already treated and more severely affected patients, tested in the “off” condition, MM were observed in the relaxed hand while voluntary movements were being performed with the other hand. The most remarkable finding was that MM were never observed when voluntary movements were performed with the non-affected hand, whereas they were almost constant when voluntary movements were performed with the affected hand. They were observed both in the de novo group and the treated group. There were more often observed for alternate movements or repetitive flexion/extension movements of the wrist than for finger tapping. None of the control subjects displayed MM. In the de novo patients, there was a significant correlation \(r=0.60; p=0.0475 \) between the severity of motor impairment, as defined by the UPDRS III motor score, and the occurrence of MM as indicated by the “MM score”.

No such correlation existed in the treated group.

Mirror movements could reflect the higher than normal level of cerebral activation in response to complex movements reported both in normal subjects and in PD patients. However, none of the controls displayed MM and the four tasks were not complex as patients performed them without difficulty, albeit more slowly.

Table 1A shows the sensitivities for the first of examiners’ encounters with each subject/method. Sensitivity was high for the reduced/absent category for both experience levels, but low for normal or increased reflexes. The tendon method for students on brisk reflex patients was particularly inaccurate compared with plantar. This was not true for clinicians. Despite low sensitivity, examiners sometimes declared confidence in their incorrect classifications: 81% declared confidence when incorrectly classifying a brisk reflex using plantar compared with 63% using the tendon method. Intraobserver agreement for reduced reflexes was reasonable but lower for normal or brisk (table 1B). These were not always small misclassification errors: 23% of clinicians’ test pairs using tendon strike classified an increased reflex correctly once but as absent on the other test. In several instances the reflex was incorrectly classified on both tests. All 13 students who declared a preference preferred the plantar strike but no clinician stated a preference.

We found poor sensitivity and reproducibility for both techniques with normal and brisk reflexes for both examiner types. Results for reduced/absent reflexes may be inflated as most patients had absent reflexes which are easier to detect. Also they may have had other subtle lower motor neurone signs giving clues to examiners. The low sensitivities show that the ankle reflex should be interpreted in the light of other physical signs. Experienced clinicians had similar results with both techniques. This conflicts with previous findings in elderly patients with normal or reduced reflexes of patients with normal or reduced reflexes. This suggests that students should be taught the plantar method in preference to the tendon strike method.
Alternatively, extended recruitment of cortical motor areas could reflect an overflow of commands into the contralateral hemisphere in unilaterally affected patients. In line with recent experimental results in a unilateral rodent model of Parkinson's disease, we suggest that MM observed in the non-involved hand during movements of the akinetic hand reflect ipsilateral activation of the primary motor cortex. In the absence of sensorimotor activation contralateral to the affected akinetic (right) hand, the ipsilateral diffusion of activation may be considered as a compensatory mechanism. This ipsilateral activation could be explained in two different ways. Firstly, a corticocortical spread as the two hemispheres are connected via the corpus callosum and corticocortical pathways. Secondly, bilateral basal ganglia projections as several anatomical observations have shown that the basal ganglia are reciprocally and directly connected to the contralateral cortex. Thus, the activation of the ipsilateral motor cortex could result from the activation of one or both of these pathways. The precise role of the ipsilateral activation of the primary cortex in the pathophysiology of Parkinson's disease is still unknown but it could be suggested that this phenomenon is a compensatory mechanism.

J S Vidal, P Derkinderen, M Vidailhet
Department of Neurology, Hôpital Saint-Antoine, Paris, France
S Thobois, E Broussolle
Department of Neurology, Neurological Hospital Pierre Wertheimer, Lyon, France

Correspondence to: Dr M Vidailhet, Service de Neurologie, Hôpital Saint-Antoine, 184 rue du faubourg Saint-Antoine, 75012 Paris, France; marie.vidailhet@sat.ap-hop-paris.fr

References
Meningioma of the optic nerve sheath: treatment with hydroxyurea

S Paus, T Klockgether, U Schlegel and H Urbach

J Neurol Neurosurg Psychiatry 2003 74: 1348-1350
doi: 10.1136/jnnp.74.9.1348-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/74/9/1348.2

These include:

References
This article cites 6 articles, 0 of which you can access for free at:
http://jnnp.bmj.com/content/74/9/1348.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata
An erratum has been published regarding this article. Please see next page or:
/content/74/10/1447.2.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
PostScript

The harsh realities facing the use of SPECT imaging in monitoring disease progression in Parkinson’s disease

Dr Snow is right to be cautious in his optimism concerning the use of functional imaging markers in neuroprotection studies in Parkinson’s disease as storm clouds gather over the methods and interpretation of CALM-PD and REAL-PET. The concerns, however, are not limited to the effect of drug treatment on ligand uptake. Most importantly we need to ask the weight that should be placed on the result of functional imaging studies when they are not supported by the accompanying clinical data. In addition, there are concerns about the ability of the methods for accurately monitoring progression. The key requirements for a PET or SPECT method to be used in assessing progression are sensitivity to clinical change and reproducibility. There are no data concerning either from the study of Winogrodzka and colleagues. Patients will leave the study or require within the first year a significant number of high reproducibility data from Seibyl et al. The very strong influence of scan to scan variability may be reduced, for example, by measuring the rate of progression and estimating the clinical data from Seibyl et al., Bergmans P, Stoof JC, et al. [123I]-CIT SPECT is a useful method for monitoring dopaminergic degeneration in early stage Parkinson’s disease. J Neurol Psychiatry. 2003;74:294–8.

Authors’ reply

We would like to thank Dr Morrish for his comments on our paper. We agree that it would be of interest to present the data of the longitudinal progression of dopaminergic degeneration (as measured by [123I]-SPECT) in correlation with data on clinical progression. In our study, the patients were drug-naïve when the baseline SPECT scans were obtained. Interestingly, these SPECT data correlated highly with clinical scores (motor UPDRS) which indicate that the SPECT measures may be of value in monitoring progression of nigrostriatal degeneration. Within our study design, however, the patients did not discontinue their dopaminergic drug treatment when the second [123I]-CIT SPECT scan was done (one year after baseline). Consequently, the UPDRS scores were influenced by dopaminergic drug effects and therefore were not suitable to study correlations with [123I]-CIT SPECT measures. Nevertheless, as dopamine transporter imaging will only be a relevant tool for monitoring dopaminergic degeneration if it ultimately reflects meaningful changes in clinical function, future studies should investigate this relationship carefully. However, there is still doubt on how adequate clinical data can be obtained in patients on drug treatment. For example, it is still unclear whether data obtained in the “defined OFF stage” are adequate enough to assess clinical progression (for a discussion, see Marek et al., 2003).

Concerning the issue of variability and reproducibility of the [123I]-CIT SPECT technique, we of course agree with Dr Morrish that, for the benefit of future neuroprotection studies, all effort should be made to improve analysis methodology to reduce the variability in imaging outcomes. Variability may be reduced, for example, by quantifying radioisomers bind automatically on a voxel by voxel basis (three dimensional). Moreover, to reduce variability in SPECT measures for dopamine transporter binding, other tracers than J-CIT might be of value. For example, FP-CIT SPECT studies in patients with Parkinson’s disease have shown reproducibility of the order of 8%. This high reproducibility may stem from the fact that acquisition can be started as soon as three hours after injection for [123I]-FP-CIT, whereas the optimal time point for acquisition of [123I]-J-CIT studies is 20 to 24 hours after injection. Consequently, the counts statistics are better for [123I]-FP-CIT than for [123I]-J-CIT SPECT studies. Interestingly, a recent preliminary study showed the feasibility of using [123I]-FP-CIT SPECT for monitoring dopaminergic degeneration in Parkinson’s disease. Nevertheless, it would be of major importance that further studies focus on minimizing the variability in SPECT measures of dopamine transporter binding, and show which radiotracer is optimal for performing progression studies.

A Winogrodzka, J Booij, E Ch Wolters
Department of Neurology, Vrije Universiteit Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands

Correspondence to: Dr A Winogrodzka; a.winogrodzka@vumc.nl

References

Corrections

There were two mistakes published in the table of the short report. Sjögren’s syndrome associated painful sensory neuropathy without sensory ataxia, by K Morii, M Iijima, M Surgiura et al in the September issue of JNNP (2003;74:1320–2); the digit 9 was added to the eleventh column head by accident and the second entry in the final column should read 12, not 2. The authors of the letter entitled Menighesona of the optic nerve sheath: treatment with hydroxyurea, published in the September issue of JNNP (2003;74:1348–50) were listed in the incorrect order. The author order should read as follows: S Paus, T Klockgether, H Urbach, U Schlegel.