Use of short term video EEG in the diagnosis of attack disorders

A McGonigal, A J C Russell, A K Mallik, M Oto, R Duncan

BACKGROUND

Distinguishing epileptic from psychogenic non-epileptic seizures (PNES) often requires video electroencephalography (EEG) recording. Inpatient recording is a limited resource; some evidence suggests that short term video EEG (SVEEG) is useful, but its role in practice has yet to be evaluated.

AIMS

To assess the usefulness of SVEEG in the diagnosis of attack disorders.

METHODS

One hundred and forty three SVEEG recordings were performed during an 18 month period. A diagnostic event was recorded in 72 of 143 (50.3%); PNES (n = 51), epilepsy (n = 7), or other attacks, such as movement disorders (n = 14).

RESULTS

SVEEG

One hundred and forty three SVEEG recordings were performed for the investigation of attack disorders during an 18 month period (July 2000 to December 2001). During this period, an additional 15 patients underwent SVEEG as part of a separate randomised controlled trial that has already been reported; these patients were therefore not included in our study. The age range was 14–75 years; 47 patients were male and 96 female.

An attack was recorded in 83 of 143 recordings (table 1). Eleven of these were not clearly confirmed as being typical of an attack, and were classed as inconclusive.

Table 1

| Type of attack recorded in 143 short term video EEG recordings, 2000–2001 |
|-----------------------------|-----------------|
| Type of attack recorded | Number |
| PNES | 51 |
| Epilepsy | 7 |
| Other ‘not epilepsy’ | 14 |
| Inconclusive attack | 11 |
| No attack recorded | 60 |
| Total | 143 |

Abbreviations: EEG, electroencephalography; PNES, psychogenic non-epileptic seizures; SVEEG, short term video electroencephalography
Therefore, a diagnostic event was recorded in 72 of 143 (50.3%).

Epileptic events were recorded in seven patients: complex partial seizures in two, myoclonic jerks in four, and one generalised tonic clonic seizure. The “not epilepsy” group included movement disorders and hyperventilation related symptoms.

Eleven patients who had no attack recorded had a clinical diagnosis suggested by history and EEG data: in 10 this was epilepsy, and in one probable cough syncope. Appropriate specialist follow up was arranged.

Therefore, the total number of SVEEG recordings providing diagnostic information, either from recorded typical events (n = 72) or history/EEG data (n = 11), was 83 of 143 (58%). The remaining 60 recordings were classed as “inconclusive”.

Outcome after “inconclusive” SVEEG

After inconclusive SVEEG, 38 of 60 patients have since had a diagnosis made (table 2). An appreciable number of patients declined or did not attend for clinic review and/or further monitoring (seven of 60).

Further monitoring (video telemetry and/or ambulatory EEG) was carried out, or is awaited, in 20 of 60 in the “inconclusive” group (table 2); some have had monitoring more than once. The long wait for monitoring in two patients reflects previous failure to attend for the appointment. Further monitoring has also been performed in seven patients with a previous diagnostic SVEEG who have more than one attack type, or who subsequently reported a change in seizure type.

DISCUSSION

SVEEG recording provided a useful yield of recorded attacks in this large series of patients, with habitual diagnostic events positively identified in 50%. Some recordings where no attacks were captured yielded diagnostic information based on history and EEG alone. In these patients, the same information could of course have been gained by clinical consultation and interictal EEG.

Follow up of the original study group at one year indicates that the diagnostic information obtained during SVEEG is robust, with no diagnosis of PNES having been revised (unpublished data, 2002).

It is not possible to calculate accurately the proportion of patients who would otherwise have required inpatient video EEG, or the number of “bed days” saved, because not all of the patients who had SVEEG would have required inpatient recording. However, the advantages of SVEEG in terms of earlier diagnosis and lower cost are likely to be considerable.

Although the technique itself is relatively simple and practicable, we would not recommend its use where appropriate clinical and electrophysiological expertise is not available. Expert knowledge of attack disorders and ictal video EEG recording is required. The EEG may be obscured by artefact during attacks, and some types of epileptic seizure may not show changes on surface EEG. It is crucial to obtain evidence that the patient’s habitual type of attack has been recorded, and to perform further recording if there is more than one type of event.

The diagnosis of attack disorders is a difficult and common clinical problem. The correct and timely diagnosis of some types of attacks may improve outcome, and saves medical costs. SVEEG is a useful diagnostic tool, particularly for suspected PNES, allowing prompt diagnosis and avoiding the need for inpatient video EEG in some patients. The technique complements existing investigative facilities, and may allow better use of the limited and expensive resource of inpatient video EEG.

Table 2 Diagnostic outcome after inconclusive short term video EEG (n = 60)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Further monitoring (n = 20)</td>
<td></td>
</tr>
<tr>
<td>On further monitoring, diagnostic events were recorded*</td>
<td>8</td>
</tr>
<tr>
<td>On further monitoring, no events were recorded but a clinical diagnosis reached</td>
<td>2</td>
</tr>
<tr>
<td>On further monitoring, no events were recorded; the clinical diagnosis remains unclear and the patient is under review</td>
<td>8</td>
</tr>
<tr>
<td>Further monitoring awaited</td>
<td></td>
</tr>
<tr>
<td>Clinical diagnosis reached, further monitoring felt to be unnecessary</td>
<td>2</td>
</tr>
<tr>
<td>No further monitoring planned (events too infrequent or patient unsuitable for monitoring); diagnosis unclear, patient under review</td>
<td>28</td>
</tr>
<tr>
<td>Patient declined/did not attend for clinic follow up/further monitoring</td>
<td>5</td>
</tr>
</tbody>
</table>

*Diagnosis after event recorded on further monitoring: 4 patients had epilepsy; 3 had PNES plus epilepsy; 1 had PNES alone.

EEG, electroencephalography; PNES, psychogenic nonepileptic seizures.

REFERENCES

Use of short term video EEG in the diagnosis of attack disorders

A McGonigal, A J C Russell, A K Mallik, M Oto and R Duncan

J Neurol Neurosurg Psychiatry 2004 75: 771-772
doi: 10.1136/jnnp.2003.024893

Updated information and services can be found at:
http://jnnp.bmj.com/content/75/5/771

These include:

References
This article cites 5 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/75/5/771#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Epilepsy and seizures (846)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/