Evidence for an association between the CSF HVA:5-HIAA ratio and aggressiveness in frontotemporal dementia but not in Alzheimer’s disease

In their recent paper, Soderstrom et al confirmed their preliminary data suggesting that the CSF HVA:5-HIAA ratio was associated with psychopathic traits and, in particular, violent and aggressive behaviour with childhood onset and adult expression. These findings might indeed reflect changed dopaminergic activity, possibly as a result of serotonergic dysregulation. We hypothesise that their findings might be applicable to other brain disorders characterised by specific behavioural disturbances, including aggression and agitation. Indeed, since several studies have found associations between altered serotonergic neurotransmission and aggression in persons with dementia, we could propose that the CSF HVA:5-HIAA ratio might be associated with aggression in persons with dementia as well. To test this hypothesis, we performed an interim analysis on 102 out of 302 patients who were included in a prospective and longitudinal study on neurochemical and genetic correlates of behavioural and psychological signs and symptoms of dementia (BPSD). The data presented further support a general application of the interesting findings of Soderstrom et al.

Patients with various neurodegenerative forms of dementia were included in this prospective study, and were followed up by means of a neuropathological and behavioural assessment every six months. In any case of death, brain autopsy was performed for neurochemical analysis as well as for neuropathological confirmation of the clinical diagnosis. All subjects and their caregivers gave informed consent to participation in the study, which was approved by the local ethics committee.

At baseline, behaviour was assessed by means of a battery of behavioural assessment scales which included the Behavioural Pathology in Alzheimer’s Disease Rating Scale (Behave-AD) and the Cohen-Mansfield Agitation Inventory (CMAI). Lumbar puncture was performed between 9 and 10 am following overnight bed rest and fasting. The first 11 ml of CSF were collected in several polypropylene vials that were immediately frozen in liquid nitrogen and stored at −80°C. Neurochemical analysis was carried out on the CSF fraction containing 6–7.5 ml by means of high performance liquid chromatography and electrochemical detection according to a method recently described method. Routine investigation of the CSF included cell count, total protein and glucose analysis, and agar gel electrophoresis of proteins. For this interim analysis, HVA and 5-HIAA levels were determined in the CSF of 13 participants with FTD, 9 participants with Parkinson’s disease (AD), and 89 participants with probable Alzheimer’s disease (AD). Spearman Rank Order was used for correlation analysis between the CSF HVA:5-HIAA ratio and BPDS, applying SigmaStat Software (SPSS Science, Erkrath, Germany).

In the AD patient group, no significant correlations were found between the CSF HVA:5-HIAA ratio and Behave-AD clusters, total and global scores, or CMAI clusters (aggressive, physically aggressive, and verbally agitated behaviours) and total scores. In persons with FTD, however, the CSF HVA:5-HIAA ratio correlated significantly with the Behave-AD aggressiveness cluster score (r = 0.386; p = 0.033) and with the CMAI verbally agitated behaviour cluster score (r = 0.564; p = 0.041). Despite small sample sizes, effects of treatments were ruled out by comparing the CSF levels of HVA (t-test: p = 0.691), 5-HIAA (p = 0.370), and the CSF HVA:5-HIAA ratio (p = 0.157) between six untreated subjects with FTD and seven subjects with FTD who were receiving atypical antipsychotics.

Our preliminary results revealed an association between the HVA:5-HIAA ratio and Behave-AD aggressiveness cluster scores. In persons with FTD, however, the CSF HVA:5-HIAA ratio and aggressiveness as observed by Soderstrom et al. is not limited to violent and aggressive behaviour with childhood onset and adult expression, but may indicate an underlying pathophysiological mechanism that may be common to aggressive symptomatology in other brain disorders, such as frontotemporal lobe dementia.

References

Extensive radiculopathy: another false localising sign in intracranial hypertension

We read with interest the review by Larner on false localising signs. Among the various false localising signs described in patients with intracranial hypertension (ICHT), radiculopathy is an important manifestation which is probably under-recognised. Many authors have documented subtle features of radiculopathy in patients with isolated intracranial hypertension (IIH). The usual manifestations of radiculopathy in these cases were acral paraesthesiaes, backache and radicular pain. Rarely, motor deficits due to radiculopathy caused by ICHT have been described.

Obied et al reported two patients with extensive radiculopathy due to ICHT: one individual had IIH and the other had cerebral sinus venous thrombosis. Both persons had papilloedema, marked visual impairment, and flaccid areflexic quadriparesis with normal MRI of brain, brainstem, and cervical spinal cord. The electrophysiological findings were consistent with radiculopathy. Both individuals initially received intravenous immunoglobulin for Guillain–Barre syndrome, without benefit, but they responded well to lumbar-peritoneal shunting. We also encountered two such cases with angiographically proven cerebral venous sinus thrombosis.

The most likely mechanism at the basis of radiculopathy appears to be similar to that of other cranial neuropathies in ICHT—that is, mechanical compression of nerve roots, due to elevated CSF pressure distending the subarachnoid space. Documented enlargement of spinal subarachnoid space and distended root pouches in a patient with radicular pain and areflexia due to IIH supports this view. Radiculopathy secondary to ICHT has been reported almost exclusively in patients with IIH or cerebral venous sinus thrombosis. Other causes of ICHT may not induce a diffuse increase in pressure in both intracranial and intraspinal compartments, and are unlikely to manifest as radiculopathy. The constellation of flaccid-areflexic quadriparesis and papilloedema may be misdiagnosed as Guillain–Barre syndrome with papilloedema. Careful analysis of the evolution of symptoms, estimation of CSF pressure, and appropriate vascular imaging should help to correctly identify the cause of ICHT.
Role of entacapone in later Parkinson’s disease not yet established

The study by Brooks and Sagar, along with a number of previous others, demonstrates benefit for the catechol-O-methyltransferase (COMT) inhibitor entacapone when compared with placebo in Parkinson’s disease (PD). However, this is insufficient evidence to justify the authors’ conclusion that “it appears logical to employ levodopa combined with entacapone routinely”.

The important issue is not whether entacapone is more efficacious than placebo, but whether it is more or less clinically effective and cost effective than the other available treatments for patients with PD that is no longer adequately controlled by levodopa alone. Other available agents—including dopamine agonists and monoamine oxidase type B (MAO-B) inhibitors—have also shown efficacy when compared with placebo. The paper would have benefited from a balanced discussion of the merits of entacapone compared with these other available treatment options.

Such a discussion is likely to be inconclusive, however, as there is a dearth of reliable evidence on the best treatment for PD, at any stage of the disease, since very few trials directly comparing active treatments have been undertaken. Companies are reluctant to undertake such trials, as it is not in their commercial interests to risk studies that might show their product to be inferior to that of a competitor. For this reason, independently funded trials—such as the current PD MED trial in the UK—should be supported to provide the reliable evidence on comparative efficacy needed to enable clinicians to make informed treatment decisions. Analysis, presentation and interpretation of the results of independent studies are also likely to be more objective than those of commercial studies. The potential for bias in commercial trials has recently been highlighted by systematic reviews and journal editorials—such as the example—systematic bias favours products which are made by the company funding the research” and “scientific studies can be manipulated in many ways to give results favourable to companies”.

There are problems with the trial reported by Brooks and Sagar, and these are common to many PD trials, which are generally of poor methodological quality.1 In a progressive condition such as PD, it is important to evaluate the long term effects of treatment, and six months follow up is inadequate. The outcome measures used should reflect the impact of treatment on the patients’ own perception of their functioning and quality of life, not that of clinicians as with the Unified Parkinson’s Disease Rating Scale (UPDRS). It is unclear how well the data obtained from on-off diaries correlates with global quality of life, and how to treat (ITT) analysis was not performed, since patients who withdrew from treatment were excluded from the analysis—ITT analysis requires such patients to be followed up and included in the analysis according to the arm to which they were allocated even if they have withdrawn from allocated therapy.2

Thus, although COMT inhibitors are welcome, the treatment options in PD, large, rigorously conducted comparative trials, assessing the long term impact on patient-rated measures of overall quality of life, are still needed to define their role in routine clinical practice.

K Wheatley, N Ives, R Gray
University of Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK

C Clarke
City Hospital, Birmingham, UK

Correspondence to: Professor K Wheatley, Birmingham Clinical Trials Unit, University of Birmingham, Park Orange, 1 Somerset Road, Edgbaston, Birmingham B15 2PS, UK; k.wheatley@bham.ac.uk

Competing interests: We are investigators in the PD MED trial and thus have a vested interest in obtaining objective evidence on the best treatment for PD. CC has received honoraria, consultancy fees, and travel expenses from the manufacturers of many of the drugs discussed.

References

Portal-systemic shunts, manganese, and parkinsonism

I read with interest the article by Yoshikawa and colleagues.1 The authors reported the case of a 44 year old woman with hereditary haemorrhagic telangiectasia (Rendu-Osler-Weber disease) involving the liver, who had raised serum concentrations of manganese, hyperintense areas in the basal ganglia on T1 weighted magnetic resonance images, and levodopa unresponsive parkinsonism. Naturally, I agree that the parkinsonism in this case is most probably related to portal-systemic (portal-venous) shunts. There are, however, two points that deserve clarification.

First, it is not entirely clear whether their fig 2 (left panel) shows portal-systemic or arterovenous shunts. The authors say that the figure shows a selective angiogram of the superior mesenteric artery. If that were the case, there should not be a “feeding artery” involved in the intrahepatic shunts (as they state in the legend to fig 2). Instead, the figure would show the portal venous system (portal-systemic shunts (that is, portal phase of the angiogram). If, on the other hand, the catheter were in the coeliac artery (as they mention in the text), then the figure would probably correspond to the arterial phase of the angiogram and show a feeding artery (the hepatic artery) and arterovenous (not portal-systemic) shunts. Interestingly, there is evidence to suggest that both types of shunt do exist, and neuronological complications in the presence of an intact (or mostly preserved) hepatic parenchyma.2 Thus excessive quantities of potentially toxic substances (for example, manganese) passing directly from the gut to the systemic circulation through portal-systemic shunts could be rapidly cleared by a normal liver as long as the hepatic arterial blood flow is adequate.

Second, Yoshikawa and colleagues claim that the parkinsonism of their patient was induced by manganese. While this is a reasonable working hypothesis, the authors provide no direct evidence supporting such a statement. The fact that severe manganese intoxication was raised does not necessarily imply that manganese played a key role in the pathogenesis of parkinsonism. Indeed, their patient lacked many clinical features often seen in cases of manganese induced parkinsonism (for example, cock walk and propensity to fall backwards).

Levodopa unresponsive parkinsonism is a well known manifestation of chronic non-Wilsonian hepatocerebral degeneration,3 Although blood concentrations of ammonia were within the normal range in the case reported by Yoshikawa and colleagues, the possibility of transient and profound ammonia entering particularly after meals was not investigated.

R de la Fuente-Fernández
Division of Neurology, Hospital A Marcide, Estrada San Pedro-Catalao s/n, 15405 Ferrol, A Coruña, Spain

Correspondence to: Dr Raúl de la Fuente-Fernández, rfuente@medynet.com

References

Authors’ reply

We are pleased to have an opportunity to comment to the important issues raised by Dr de la Fuente-Fernández regarding a case of hereditary haemorrhagic telangiectasia

www.jnnp.com
with parkinsonism. Raised serum manganese combined with the abnormal findings in cranial magnetic resonance imaging and abdominal angiography were the rationale for our conclusion that the parkinsonism in our patient was induced by manganese that had accumulated because of portal-systemic shunting.

A further angiogram: the angiogram of the superior mesenteric artery presented in our manuscript showed a dilated feeding artery, a dense mottled hepatogram, and early filling of the hepatic vein. These findings concerned the arterial phase. The intraparenchymal arteriovenous shunts were definite diagnostic evidence of hereditary haemorrhagic telangiectasia but not of portal-systemic shunts. We therefore agree with De la Fuente-Fernández that we should have presented another angiogram in the portal phase showing a hypoplastic portal vein with abnormal vessels between the mesenteric and inferior vena cava to confirm the portal-systemic shunt.

About the parkinsonism: after the failure of treatment by levodopa, we took other measures to relieve the parkinsonism; for example, we persuaded the patient to avoid manganese-rich foods such as blueberries. Fortunately, her serum manganese gradually decreased below the normal upper limit during the next six months, and her neurological symptoms became less prominent. Alleviation of parkinsonism in inverse proportion to serum manganese concentrations suggests that the parkinsonism in this case may have been caused by manganese accumulation, and that the patient was in the early stage of manganese intoxication in which neurological symptoms were incomplete and partially reversible.

About transient hyperammonaemia: we searched for cases of hyperammonaemia related parkinsonism, and finally found a case with portal-systemic encephalopathy and parkinsonism which disappeared after treatment of the portal-systemic shunting.1 The mechanism of parkinsonism in that case is clearly open to debate, as hyperammonaemia is generally thought to cause disturbance of consciousness or negative myoclonus rather than parkinsonism. We do not deny the possibility that our patient may have had a transient increase in serum ammonia, though it seems unlikely when there had never been a disturbance of consciousness.

K Yoshikawa, M Nakagawa
Department of Neurology, Research Institute for Neurological Diseases and Geriatrics, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
Correspondence to: Dr K Yoshikawa, kyo.shika@kpref-med.ac.jp

Reference

Intraventricular assessment of preoperative electrographic recordings
The paper by Song et al3 describes the placement of intraventricular arrays with endoscopic assistance for preoperative electrographic recordings for epilepsy surgery. The 4.2 mm outer diameter rigid endoscope was introduced up to the temporal os from where the array were advanced until a point of resistance was felt.

In our paper4 we reported the use of a 1.2 mm outer diameter semirigid endoscope to explore the contents of the ventricles prior to electrode placement, with direct visual assessment of the final electrode position, which helped us obtain appropriate pre-resection electrographic recordings. Perhaps it would be more convenient to use semirigid endoscopes or slim fibrescopes to fully visualise the ventricle as well as flexible arrays to avoid electrode displacement resulting in unintentional cerebral lesions.

O H Jiménez
Dept Neurosurgery, Hospital General “Dr. Miguel Silvia”, Secretaría de, Salud de Michoacán, México

N Nagore
Dept Neurosurgery, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58000, Mexico
Correspondence to: Dr O Jiménez, ohj@yahoo.com.mx

References

Parkinsonism and persistent vegetative state after head injury
Matsuda et al recently reported three patients with a persistent vegetative state (PVS) after severe head injury who, after recovering from prolonged disturbance of consciousness, presented parkinsonian features (mainly rigidity and hypokinesia) which improved after levodopa treatment.1 MRI studies showed lesions in the dorsolateral midbrain and cerebral peduncles suggesting axonal injury involving the dopaminergic system (substantia nigra and ventral tegmental area). Similar observations were made in a series of 125 patients with severe vegetative state following head injury (survival time 1–10 years). Nineteen of 49 patients surviving in fully developed or mild recovery stages of PVS initially presented with severe to moderate, mainly symmetrical, parkinsonian symptoms (amimia, rigidity, hypokinesia, convergence disorders). Following levodopa treatment, 11 patients showed incomplete and full improvement of both the PVS and parkinsonism, while four patients showed complete recovery from both syndromes. However, in 15 patients—despite good recovery from the initial PVS and other neurological symptoms (spasticity, frontal and cerebellar symptoms), and long term levodopa treatment—a progressively parkinsonian syndrome (rigidity, hypokinesia) developed in six patients this was associated with unilateral or bilateral resting tremor. In MRI studies done in 34 patients, 32 showed unilateral or bilateral lesions in the midbrain involving both the dorsolateral tegmentum and the cerebral peduncle.2

Neuropathological studies were undertaken in 32 patients surviving without essential improvement of the PVS for at least two months after head injury. Parkinsonian syndromes were severe in seven, moderate in five, and mild in four.3 In addition to older haemorrhages or necroses in the putamen and globus pallidus (n = 6), globus pallidus and thalamus (n = 8), all brains revealed multiple lesions in the rostral brain stem with unilateral or bilateral focal lesions in the substantia nigra, vascular lesions in the lateral and dorsolateral midbrain in seven, and symmetrical post-anoxic cellular depletions or gliosis or unilateral necroses in the substantia nigra in one case each. In nine cases, there was a good correlation between the severity of clinical parkinsonian signs and the severity and extent of nigral lesions; three patients showed severe parkinsonian signs associated with only mild nigral damage, but there was severe bilateral damage to the globus pallidus in two. In four patients the expression of clinical parkinsonian signs was more severe than the anatomical lesions, in particular the damage to the substantia nigra. The distribution pattern of the brain stem lesions correlated with the sequelae of transientthorntinal shifting caused by increased intracranial pressure; direct or “primary” traumatic lesions to the oral brain stem usually cause acute death, as seen in two young men with rupture of the diencephalon and acute haemorrhage into the substantia nigra or midbrain following severe and acute fatal head injuries. However, in rare patients with long survival following head injury, symmetrical necrosis of the substantia nigra without a clinical parkinsonian syndrome has been reported.4

The clinical phenotype of post-traumatic parkinsonism often resembles that in post-encephalic parkinsonism, both showing akinesia, rigidity, hypomimia, rare tremor, and optomotor and vegetative disorders. Both the lesion pattern and the therapeutic efficacy of long term levodopa treatment suggest a dysfunction of the striato-nigral dopaminergic system which, however, may show progressive decomposition in some patients with long lasting PVS after severe head injury.

K A Jellinger
Institute of Clinical Neurobiology, Kenyongasse 18, A-1070 Vienna, Austria
Correspondence to: Dr Kurt A Jellinger, kurt.jellinger@univie.ac.at

References

Authors’ reply
We greatly appreciate the thoughtful comments offered by Dr Jellinger, and his interest in our report of three cases in a persistent vegetative state (PVS) after severe head injury. 3. We greatly appreciate the thoughtful comments offered by Dr Jellinger, and his interest in our report of three cases in a persistent vegetative state (PVS) after severe head injury. 3. We greatly appreciate the thoughtful comments offered by Dr Jellinger, and his interest in our report of three cases in a persistent vegetative state (PVS) after severe head injury.
injury, who recovered from a prolonged disturbance of consciousness after they were given levodopa.

D. Jellinger et al reports that in cases of prolonged post-traumatic coma the brains showed multiple lesions of primary and secondary traumatic origin and that the highest incidence of lesions was found in the rostral anterior tegmentum. These were considered to be almost exclusively of secondary origin, resulting from cerebral and peripheral circulatory disorders, post-traumatic oedema, and increased intracranial pressure. Primary (direct) traumatic lesions to the rostral brain stem usually cause acute death. In contrast to this report, the brain stem injuries in our cases suggested by MRI may have been the primary traumatic lesions. All these cases showed high intensity lesions in the dorsolateral midbrain on T2 weighted MRI. These findings implied that the midbrain was injured by tentorial compression induced by translatory and rotatory acceleration when the cranial was struck in its sagittal axis, or by posterolateral damage. MRI findings, particularly in the acute stage, are useful for evaluating primary brain damage. 1

Furthermore, another distinctive feature of our cases was that the anatomical distribution of the lesions was not multifocal, but was localized in the cerebral peduncle or the dorsolateral midbrain, implying diffuse axonal injury involving the substantia nigra or the ventral segmental area. 1 The neuroanatomico-functional findings, the clinical features of extra-pyramidal dysfunction, and the efficacy of levodopa treatment all strongly suggest that the dopaminergic pathways were selectively damaged and caused defects in the nigro-striatal, mesocortical, or mesolimbic system. As Dr Jellinger indicates, progressive decompensation in levodopa treatment is a considerable problem. However, not all our patients have required permanent medica-

tion; an example is case 1 in our report, whose recovery was sustained even after the levodopa treatment was discontinued. Some patients may need levodopa only as a trigger agent at the start of treatment to interrupt the disease cycle of exhaustion of the neurotransmitter. However, discriminating which cases fall into this category is very difficult and withdrawal of medication involves ethi
cal problems.

In recent neuropathological and neuro-

radiological studies on PVS after traumatic brain injury, the most common structural abnormalities were diffuse axonal injury involving the corpus callosum, the dorsolateral aspect of the rostral brain stem, and the thalamus. 1 Although the clinical features will vary in such cases, a take-home message from most of those with big impact. So, how well does the Yearbook of neurology and neurosurgery succeed in informing about significant advances in knowledge over this very speciality area for 2003? The editors draw their selection from a survey of 500 journals, with something from most of those with big impact. Thirty seven associate editors assisted by reviewing the various subspecialty areas; of these all except 11 come from North America, of whom 9 are neurosurgeons rather than neurologists, an intriguing imbalance. Papers selected cover every conceivable subspecialty, and sometimes the inextricable. New gene mutations abound, illuminating case histories are provided, we learn that the visual cortex is hyper-excitable in migraineurs, and about informed consent in neurosurgery, and we are treated to pictures of new cranial remodelling devices for treating craniostenosis. To provide a critical review of such a diversity of subject matter would be a Herculean task. All one can do is to congratulate the editors for high-lighting a section of topics that opens one’s eyes to the dazzling diversity of our specialty. Nevertheless, you would not go to a yearbook for a comprehensive review of developments in a particular subspecial-

ity. Therefore, this is essentially armchair reading, and none the less useful for that.

Each article is summarised in half a page or so under the headings introduction (or back-
ground), methods, results, and conclusion. This is followed by a brief editorial comment often interesting and pithy. At least some of this signed editorial comment is derived ver-
batim, or with only minor paraphrasing, from editorial comment in the journal originally publishing the chosen paper. So whose opinion are you really reading in the yearbook?

Although interestingly informative outside one’s subspecialty, one does need to ask whether the concept of a single volume yearbook isn’t becoming submerged by the sheer volume of potentially eligible papers published each year. And, although this 2003 yearbook arrived on my desk in December 2003, it predominantly covers papers published in 2001, with some from early 2002, and an occasional hangover from 2000. So, it isn’t that up to date. I guess libraries will buy it, partly out of habit. But for individuals, £74 is a steep price for neurological coffee table reading.

M Donaghy

Reference


Catatonia: a clinician’s guide to diagnosis and treatment


This nicely produced book reviews one of the historically most interesting, but clinically still very important, disorders of neuro-

psychiatry. Catatonia, described by Kalabium in the latter half of the 19th century, was hijacked by Kraepelin to be incorporated into his concept of dementia praecox, and almost disappeared from the literature in the first half of the 20th century, being finally eclipsed by the introduction of effective psychotropic drugs thereafter. But, as Fink and Taylor explore here, catatonia as a diagnosis is still a diagnostic challenge, with causes far beyond schizophrenia and a syndrome with effective treatment, notably, but not exclusi-
vately electroconvulsive therapy (ECT).

For those interested in the cerebral basis of psychiatry, a condition with the main presenting signs of mutism, immobility, negativism, posturing, stereotypy, and echo-

phenomena cannot fail to attract attention, and the many faces of catatonia (title, chapter 3) are an olla podrida of neuro-

psychiatry. It is refreshing to find reference to Leonhard’s work and the catatonias in a text from American authors, who are thoroughly appreciative of the European literature on their subject, and shyly critical of DSM-IV. Their overall conclusions are clear. Catatonia is a common syndrome, neuroleptic malignant syndrome is malignant catatonia, catatonia is not usually associated with schizophrenia, and it is a syndrome of motor dysregulation with a good prognosis—if identified and treated early. This book is a pleasure to read, but should be on the imperative reading list for all psychiatric trainees to inform them about the history of their discipline, the importance of neuropsychiatry, and how to write clearly.

W Matsuda, Y Komatsu
Department of Neurosurgery, Tuskuba Medical Centre Hospital, 1-3-1 Amakubo, Tuskuba, Ibaraki 305-0005, Japan

Correspondence to: Dr Watsuki Matsuda, watsuki@msu.biglobe.ne.jp

References


Book reviews

Year book of neurology and neurosurgery 2003


Every year, countless journals publish myriad neurology and neurosurgery papers. There is immense attraction in the notion of a single volume yearbook that selects and comments upon the best. So, how well does the Yearbook of neurology and neurosurgery succeed in informing about significant advances in knowledge over this very speciality area for 2003? The editors draw their selection from a survey of 500 journals, with something from most of those with big impact. Thirty seven associate editors assisted by reviewing the various subspecialty areas; of these all except 11 come from North America, of whom 9 are neurosurgeons rather than neurologists, an intriguing imbalance.

Papers selected cover every conceivable subspecialty, and sometimes the inextricable. New gene mutations abound, illuminating case histories are provided, we learn that the visual cortex is hyper-excitable in migraineurs, and about informed consent in neurosurgery, and we are treated to pictures of new cranial remodelling devices for treating craniostenosis. To provide a critical review of such a diversity of subject matter would be a Herculean task. All one can do is to congratulate the editors for high-lighting a section of topics that opens one’s eyes to the dazzling diversity of our specialty. Nevertheless, you would not go to a yearbook for a comprehensive review of developments in a particular subspecial-

ity. Therefore, this is essentially armchair reading, and none the less useful for that.

The New Oxford textbook is the latest and largest of the Oxford textbooks of psychiatry. The book was originally published in 2000 and has recently appeared in paperback. This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.

The first volume covers general issues and the scientific basis of psychiatry, includ-
ing a number of reviews of neurobiology. Interestingly, psychodynamic contributions have a separate section. The remainder of the first volume is taken up with coverage of the clinical syndromes of adult psychiatry, including substantial coverage of dementia.

The second volume includes review of special topics with a number of articles on aspects of the psychiatry and medical condi-
tions. This includes a useful chapter on neurological disease by Maria Ron, and on epilepsy by Peter Oone. The remaining part of the second volume addresses the psychiat-
ric subspecialties as well as having a substan-
tial section on psychiatric treatments, both pharmacological and non-pharmacological.

This is the best modern British textbook of psychiatry. It is over 2000 pages long and comes in two stout volumes. The interna-
tional editorship is led by Michael Gelder, Emeritus Professor of Psychiatry at Oxford, with Spanish (Jaun Lopez-Ibor) and American (Nancy Andreasen) co-editors. The book is inevitably based on a myriad of individual contributions although the choice of contrib-
utor and standard of editing is exemplary.
cognitive neuroscience, including perception, language, the inner world of memory and emotions, and the breakdown of the mind in certain neurological disorders. Within these acts, each scene examines a particular feature of the mind and illustrates how Shakespeare dissected and explored it in his own laboratory—the theatre. The scene opens with a quotation from the chosen play and a brief synopsis of the plot before moving on to discuss the hard neuroscience underlying this cognitive phenomenon as revealed by the latest neuroimaging techniques. For example, in discussing the role of frontal lobes in attention shifting and the planning of behaviour, the example is chosen of Prince Hal, the wayward, youthful heir of Henry IV who purposely turns from the influence of Sir John Falstaff and his frivolous drinking companions in order to develop the resolve and strength of character which will later serve him well as King Henry V. This transformation is compared with the case of Phineas Gage, the 19th century rail worker who survived a dramatic penetrating injury to his cranium but consequently displayed a remarkable alteration in his personality. Recent computed tomography reconstructions of Gage’s skull and Antonino Damasio have clearly delineated the passage of the three foot tamping iron through the frontal cortex—the area ‘responsible for the functioning of what we call a moral sense’.

The concept proposed by Fuster and the authors have worked hard to bring it to life. The target audience presumably consists of people with no specialist knowledge of either Shakespeare or neurology and, if this is so, the reader will be informed and, I hope, interested. The rich neuroscientific tableau ranges from Chomsky and language to the functional imaging of hallucinatory experience in schizophrenia, while the bite-sized chunks of Shakespeare successfully convey the bard’s penetrating insight into the human psyche. The suggestion is that scientists, too, need to step outside the laboratory to find inspiration for their hypotheses. Lavish illustration with the exquisite resonance imaging (fMRI), positron emission tomography, and single photon emission computerised tomography images, alongside numerous performance photos from well known theatrical productions, give this book an enticing, coffee table appeal.

However, the book suffers from the contradictions undergone in order to link the Shakespearean poetry to the scientific project. Take, for example, the use of Macbeth’s grasping at an illusory dagger to introduce a discussion of the cerebellar control of complex motor acts, or the soliloquy from Hamlet’s murderous uncle, Claudius, which begins ‘O, my offence is rank, it smells to heaven’ as a cue to show fMRI pictures of ‘areas of the brain that become active with smell’. In addition, the simplistic, rather than simplified, portrayal of functional imaging is coupled with brain images that are often unlabelled and poorly explained, giving the impression of a gaudy backdrop used to distract from an empty plot. The inherent danger in this simplistic approach, instead of facilitating public understanding of neurosciences, an aura of charmed infallibility is created. A brief mention of some of the limitations of functional imaging techniques would have helped to avoid this pitfall.

On balance, where this book succeeds, it does so due to the infectious enthusiasm of the authors. The tortuous metaphors and fancy pictures do not help much. Dialogue between science and literature has come a long way since CP Snow gave his famous Rede Lecture on the two culvertian embankments. Non-scientists are devouring popular science books—perhaps scientists need to reciprocate the attention. The Bard on the brain could certainly be instrumental in encouraging us to get to the theatre more often.

A Zeman

The bard on the brain—understanding the mind through the art of Shakespeare and the science of brain imaging


One of the great challenges of popular science writing is to convey a coherent and consistent impression of scientific ideas while avoiding confusing, specialist terminology. The most useful tools for this task are metaphor and pictures. The Dana Press, publisher for the Charles A Dana Foundation, has as its mandate the provision of information about the personal and public benefits of brain research. With The bard on the brain, they have chosen to use the voice of William Shakespeare, the master craftsman of metaphor, to introduce the areas of human cognition that have attracted the most attention in recent functional imaging research. The primary, and by far the most important, approach is the use, as the authors explain, ‘Shakespeare’s genius derives from his keen insight into the human mind’ and that, in functional imaging, ‘brain scientists finally have the means to address questions that Shakespeare could only have brooded about long after he had put forward four centuries ago’.

The book is a play in seven acts, each of which tackles a different field of research in attention shifting and the planning of behaviour, the example is chosen of Prince Hal, the wayward, youthful heir of Henry IV who purposely turns from the influence of Sir John Falstaff and his frivolous drinking companions in order to develop the resolve and strength of character which will later serve him well as King Henry V. This transformation is compared with the case of Phineas Gage, the 19th century rail worker who survived a dramatic penetrating injury to his cranium but consequently displayed a remarkable alteration in his personality. Recent computed tomography reconstructions of Gage’s skull and Antonino Damasio have clearly delineated the passage of the three foot tamping iron through the frontal cortex—the area “responsible for the functioning of what we call a moral sense”.

The concept proposed by Fuster and the authors have worked hard to bring it to life. The target audience presumably consists of people with no specialist knowledge of either Shakespeare or neurology and, if this is so, the reader will be informed and, I hope, interested. The rich neuroscientific tableau ranges from Chomsky and language to the functional imaging of hallucinatory experience in schizophrenia, while the bite-sized chunks of Shakespeare successfully convey the bard’s penetrating insight into the human psyche. The suggestion is that scientists, too, need to step outside the laboratory to find inspiration for their hypotheses. Lavish illustration with the exquisite resonance imaging (fMRI), positron emission tomography, and single photon emission computerised tomography images, alongside numerous performance photos from well known theatrical productions, give this book an enticing, coffee table appeal.

However, the book suffers from the contradictions undergone in order to link the Shakespearean poetry to the scientific project. Take, for example, the use of Macbeth’s grasping at an illusory dagger to introduce a discussion of the cerebellar control of complex motor acts, or the soliloquy from Hamlet’s murderous uncle, Claudius, which begins “O, my offence is rank, it smells to heaven” as a cue to show fMRI pictures of “areas of the brain that become active with smell”. In addition, the simplistic, rather than simplified, portrayal of functional imaging is coupled with brain images that are often unlabelled and poorly explained, giving the impression of a gaudy backdrop used to distract from an empty plot. The inherent danger in this simplistic approach, instead of facilitating public understanding of neurosciences, an aura of charmed infallibility is created. A brief mention of some of the limitations of functional imaging techniques would have helped to avoid this pitfall.

On balance, where this book succeeds, it does so due to the infectious enthusiasm of the authors. The tortuous metaphors and

Parkinson’s disease, diagnosis & clinical management


This multi-authored tome on Parkinson’s disease (PD) admirably captures the complexity and diversity of the many clinical challenges and scientific problems that surround this common neurodegenerative disorder. Contributions over 58 chapters embrace an international body of expertise, with a pronounced north american emphasis, and range from discussing the early history of the condition to a welcome section on social issues, with in depth attention paid to the clinical presentation, including psychological features, structural and chemical pathology, theories of aetiology and pathogenesis, drug, surgical, and other treatments, and atypical and familial forms of parkinsonism. The text is generously referenced and well illustrated with black and white figures. There are impressive chapters on the contribution of MPTP to our understanding of PD, genetic and environmental factors, and the drug classes employed in treatment as well as the complications of treatment, including dyskinesia and motor fluctuations. Proper attention is given to the management of psychosis and cognitive decline, with discussion of the relationship of these features in PD to dementia with Lewy bodies and Alzheimer type pathology. Future avenues of treatment, including neuroprotection and gene therapy, are also covered in this near encyclopaedic compendium, which is highly recommended for all those who treat patients with PD in neurology, geriatrics, and old age psychiatry departments, as well as research scientists in the field, and it should be required reading for all neurological trainees.

R Pearce

Principles and practices of emergency neurology—handbook for emergency physicians


This is a handbook based on an earlier larger book, Emergency neurology: principles and practice, in response to enquiries from emergency medicine residents about whether a handbook, based on this main text, would be available. This is the result. Whether it is justified in calling itself a handbook is hard to say. The area covers three of my hands (small). It runs to over 400 pages with approximately 50 authors. It covers neurological examination and neurodiagnostic features, which tackles a different field of research in attention shifting and the planning of behaviour, the example is chosen of Prince Hal, the wayward, youthful heir of Henry IV who purposely turns from the influence of Sir John Falstaff and his frivolous drinking companions in order to develop the resolve and strength of character which will later serve him well as King Henry V. This transformation is compared with the case of Phineas Gage, the 19th century rail worker who survived a dramatic penetrating injury to his cranium but consequently displayed a remarkable alteration in his personality. Recent computed tomography reconstructions of Gage’s skull and Antonino Damasio have clearly delineated the passage of the three foot tamping iron through the frontal cortex—the area “responsible for the functioning of what we call a moral sense”.

The concept proposed by Fuster and the authors have worked hard to bring it to life. The target audience presumably consists of people with no specialist knowledge of either Shakespeare or neurology and, if this is so, the reader will be informed and, I hope, interested. The rich neuroscientific tableau ranges from Chomsky and language to the functional imaging of hallucinatory experience in schizophrenia, while the bite-sized chunks of Shakespeare successfully convey the bard’s penetrating insight into the human psyche. The suggestion is that scientists, too, need to step outside the laboratory to find inspiration for their hypotheses. Lavish illustration with the exquisite resonance imaging (fMRI), positron emission tomography, and single photon emission computerised tomography images, alongside numerous performance photos from well known theatrical productions, give this book an enticing, coffee table appeal.

However, the book suffers from the contradictions undergone in order to link the Shakespearean poetry to the scientific project. Take, for example, the use of Macbeth’s grasping at an illusory dagger to introduce a discussion of the cerebellar control of complex motor acts, or the soliloquy from Hamlet’s murderous uncle, Claudius, which begins “O, my offence is rank, it smells to heaven” as a cue to show fMRI pictures of “areas of the brain that become active with smell”. In addition, the simplistic, rather than simplified, portrayal of functional imaging is coupled with brain images that are often unlabelled and poorly explained, giving the impression of a gaudy backdrop used to distract from an empty plot. The inherent danger in this simplistic approach, instead of facilitating public understanding of neurosciences, an aura of charmed infallibility is created. A brief mention of some of the limitations of functional imaging techniques would have helped to avoid this pitfall.

On balance, where this book succeeds, it does so due to the infectious enthusiasm of the authors. The tortuous metaphors and
testing, common neurological presentations, for example headache and weakness, specific neurological conditions, for example multiple sclerosis and cerebrovascular disease, neurological trauma, paediatric neurological emergencies, pregnancy related neurological emergencies, neurotoxicology, and brain death. So, it attempts a comprehensive coverage. The editors consider it to be symptom based, although this is not always achieved. It has many tables, good illustrations, and management of algorithms with “pearls and pitfalls” at the end of every chapter. The neurological examination is done poorly, particularly the cranial nerves. This needs to be done with pictures of the lesions, their causes, and the anatomy, based around the common emergency presentations in A&E. Although British neurologists would disagree with some of the advice given, most of the text is reliable and clear. (For instance, in the chapter on myasthenia gravis, it states “useful gauges include pulse oximetry, peak expiratory flow and PCO2 measurement”, which are all poor gauges of impending ventilatory failure and vital capacity is the most important measurement in this respect.) The most disappointing feature is that the chapters are not adequately focused on emergency conditions. The chapter on movement disorders covers virtually the whole spectrum of chronic movement disorders without specifically concentrating on the common acute presentations, such as drug induced dystonia with oculogyric crisis and hemiballisms, which are likely to come to A&E. Unfortunately the editors and authors have failed to produce a sufficiently concise account of emergency conditions to make this book really useful. It needs to be much briefer and appropriately focused to achieve this book really useful. It needs to be much more, and should profoundly influence clinical thinking. A chapter on the cerebellum is also included in the opening section.

The book then contains chapters on two main themes, cognition in movement disorders, including the long controversial area of links with dementia, and the neuropsychiatry of movement disorders. The main diseases discussed are the obvious eponymous ones of Parkinson’s, Huntington’s, and Gilles de la Tourette, as well as cortico-basal degeneration. There are some curious omissions, Wilson’s disease, Sydenham’s chorea, and supranuclear palsy, among others. The cognitive problems embrace such topics as speech disorders and apraxias, and include chapters on animal models as well as clinical research.

The section on neuropsychiatric aspects is laid out rather differently and less systematically. A chapter on mood disorders and the pallidum, another on depression and the basal ganglia, another on psychosis and mood disorders in Huntington’s disease, some disease orientated, others anatomically based. Nevertheless, the individual chapters are, for the most part, well written, and included are contributions on REM sleep behaviour disorder, psychogenic movement disorders, and obsessive compulsive disorder. A separate section is devoted to quality of life studies.

The book is a timely reminder of the growth of interest in and the clinical importance of neuropsychiatry, and quite some space in the text is given to treatment and management issues. No longer can the basal ganglia simply be viewed as structures sub-serving motor function, they represent drives and affects which are re-represented cortically and which propel our very being.

D Hilton-Jones

Mental and behavioral dysfunction in movement disorders


It was not long ago that the basal ganglia were confidently asserted to have no influence on cognition, and to have only motor functions. This was the province of neurology, and the concept that they might be involved in disordered behaviour other than that referred to as movement disorders was an anathema to generations of neurologists.

As Goetz notes, in the introduction to this nicely produced book, this view ignored over a 100 years’ of clinical observation, and much subsequent work, theoretical, clinical, neurochemical, and neuroanatomical, all of which underline the central role of the basal ganglia structures in regulating behaviour, in its widest sense, and hence the association between movement disorders and cognitive and behavioural dysfunction.

The openness in this text is with neuroanatomy and neurochemistry, rightly so since the impact of the discovery of dopamine and the unveiling of the new neuroanatomy of the limbic forebrain, have fundamentally altered the way we think about the brain and its functions, and should profoundly influence clinical thinking. A chapter on the cerebellum is also included in the opening section.

The second edition was published in 1986, a matter of months before the identification of the gene involved in the disease process and its protein product dystrophin. Within a few years it became apparent that dystrophin and dystrophin associated proteins have a fundamental role in various forms of muscular dystrophy, and for a while it looked as if there might be a common mechanism of membrane fragility due to dysfunction of these membrane associated proteins. Then abnormal cytosolic proteins were found in some forms of limb girdle dystrophy and it became clear that there was no simple single disease mechanism. Despite that, altered function of membrane proteins is clearly of fundamental importance in many dystrophies and Muntoni has been at the forefront of recent discoveries relating to altered glycosylation of the membrane protein z-dystroglycan in various forms of congenital and adult onset limb girdle dystrophies.

There is no need to describe the individual chapters in detail. In brief, the monograph covers the history of the disease (Emery being a noted medical historian), clinical features, differential diagnosis, muscular pathology, pathogenesis, genetic counselling, and management. Emery is retired from clinical practice but the clinical setting is kept up to date by his being joined by Muntoni for this timely third edition.

All those involved in the management of DMD will find something of value in this book. Some patients and families may also want to dip into it. Those interested in the history of medicine will find it a fascinating story. Let us hope that a fourth edition, detailing the success of genetic engineering, will not be too far off, but in the meantime there is much that can be done to alleviate the consequences of this truly awful condition.

D Hilton-Jones

Duchenne muscular dystrophy, 3rd edn


Quite simply, this monograph is essential reading for anybody involved with this devastating condition, and indeed for those involved with any form of muscular dystrophy, whether in the clinic or in the laboratory. Duchenne muscular dystrophy (DMD) is the archetypal dystrophy. It is because the clinical course is so stereotyped that it was the first of the dystrophies to be defined clearly, over a century ago. The historical journey from the first clinical descriptions to our present state of knowledge forms the core of this book, with side branches relevant to the identification of other specific forms of dystrophy, particularly the limb girdle dystrophies. The nihilist may suggest that all of this knowledge has as yet failed to find a cure, but for the clinicians intimately involved with these patients we can now do more than ever to provide an improved quality of life. There is of course great hope that “genetic engineering” will lead to a cure, but patients and their families cannot live on hope alone and Professors Emery and Muntoni have elegantly summarised present management options.

The second edition was published in 1986, a matter of months before the identification of the gene involved in the disease process and its protein product dystrophin. Within a few years it became apparent that dystrophin and dystrophin associated proteins have a fundamental role in various forms of muscular dystrophy, and for a while it looked as if there might be a common mechanism of membrane fragility due to dysfunction of these membrane associated proteins. Then abnormal cytosolic proteins were found in some forms of limb girdle dystrophy and it became clear that there was no simple single disease mechanism. Despite that, altered function of membrane proteins is clearly of fundamental importance in many dystrophies and Muntoni has been at the forefront of recent discoveries relating to altered glycosylation of the membrane protein z-dystroglycan in various forms of congenital and adult onset limb girdle dystrophies.

There is no need to describe the individual chapters in detail. In brief, the monograph covers the history of the disease (Emery being a noted medical historian), clinical features, differential diagnosis, muscular pathology, pathogenesis, genetic counselling, and management. Emery is retired from clinical practice but the clinical setting is kept up to date by his being joined by Muntoni for this timely third edition.

All those involved in the management of DMD will find something of value in this book. Some patients and families may also want to dip into it. Those interested in the history of medicine will find it a fascinating story. Let us hope that a fourth edition, detailing the success of genetic engineering, will not be too far off, but in the meantime there is much that can be done to alleviate the consequences of this truly awful condition.

D Hilton-Jones
Role of entacapone in later Parkinson's disease not yet established

K Wheatley, N Ives, R Gray and C Clarke

J Neurol Neurosurg Psychiatry 2004 75: 1081

Updated information and services can be found at:
http://jnnp.bmj.com/content/75/7/1081.1

These include:

References
This article cites 5 articles, 4 of which you can access for free at:
http://jnnp.bmj.com/content/75/7/1081.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/