White matter abnormalities on MRI in neuroacanthocytosis

Neuroacanthocytosis denotes a group of uncommon heterogeneous neurodegenerative disorders associated with acanthocytosis in the absence of any lipid abnormality. A variety of modes of inheritance have been proposed (X linked and autosomal recessive are clearly described, but a recent report of dominantly inherited chorea acanthocytosis appears to be caused by Huntington’s disease-like type 2 expansions in the JNPH1-3 gene) and mutations in two genes have been identified, the XK gene (in the X linked McLeod phenotype) and the CHAC gene (9q21; autosomal recessive). A wide variety of clinical features including chorea, orofacical dystonia, dysphagia, dysarthria, peripheral neuropathy, myopathy, seizures, and dementia has been described in these disorders.

Case reports

Case 1
This patient was briefly described as case 19 in the report of Danek et al. He was a 61 year old white male who had been well until 3 years previously, when he took early retirement from teaching owing to “disillusionment”. He subsequently developed a progressive dementing illness, associated with facial tics, grunting noises, dysarthria, and chorea over the subsequent 3 years. There was no family history of neurodegenerative disease. He first presented to a neurologist having had an isolated generalised tonic–clonic seizure. On examination, he had a frontal dementia (Mini Mental State Examination (MMSE) score of 27/30) with evidence of self neglect and choreiform movements in all four limbs, and a prominent facial tic. He had little insight into his current illness. All tendon reflexes were absent. Investigation demonstrated numerous acanthocytes on blood films. Creatine kinase was raised at 1125 IU/l. Kell antigens were only weakly positive, which conformed to the McLeod phenotype. DNA analysis demonstrated numerous acanthocytes on blood films. Creatine kinase was raised at 1125 IU/l. Kell antigens were only weakly positive, which conformed to the McLeod phenotype. DNA analysis for alternative causes of white matter disease was negative (full blood count, copper studies, lipid studies, protein electrophoresis, vasculitic screen, and analysis of the XK gene). CSF analysis, and urinary amino acids. An electroencephalogram showed no evidence of seizure discharge, but excess generalised slow wave activity. Nerve conduction studies were within normal limits. An MRI scan of the head (fig 1A) showed widespread areas of increased signal within the white matter of both cerebral hemispheres, especially within the lentiform nucleus bilaterally, but also within the thalamus, cerebral peduncles, and pons, and involving the corpus callosum (white arrow, fig 1B).

Case 2
This 56 year old Italian male developed chorea at the age of 42 years, and subsequently neuropsychological problems. The clinical aspects of this case have been reported previously. Numerous acanthocytes were seen on blood films, with weak Kell antigen. Analysis of the XK gene identified a R133X mutation. An MRI scan of the head showed mild increased signal within white matter and putamen (fig 1D). Kell serology was normal, with exclusion of the McLeod phenotype. All other investigations including Huntington’s mutational analysis, CSF, and white cell enzyme analysis were negative. Analysis of the CHAC locus is ongoing, but no mutations were identified in the XK gene. MRI head scan (fig 1E,F) demonstrated abnormally high signal in the periventricular white matter bilaterally, with involvement of the corpus callosum and cerebellar atrophy, but without contrast enhancement.

Discussion
Both computed tomography and MRI have been reported to show caudate and more generalised cerebral atrophy in neuroacanthocytosis. Although increased signal on T2 weighted MRI in the caudate and putamen has been noted previously, the increased signal throughout the cerebral hemispheres (including the corpus callosum in cases 1 and 3) reported here has not been reported previously. Extensive investigation for alternative causes of white matter abnormalities (vasculitic screen, and analysis

![Figure 1](http://jnnp.bmj.com/) Axial T2 weighted (A) and sagittal (B) MRI from case 1, showing numerous areas of signal increase within the white matter, and involving the corpus callosum (arrow). (C) Axial T2 FLAIR MRI from case 2 showing mild signal increase within the white matter in the posterior periventricular area. (D) Blood film from case 3 showing numerous acanthocytes (arrow). Axial T2 weighted (E) and sagittal (F) MRI from case 3 showing similar, but less marked, white matter abnormalities to case 1, involving the corpus callosum (arrow).
of CSF, very long chain fatty acids, mitochondria, white cell enzymes and plasma lysosomal enzymes) was negative and there was no history of hypertension. In view of the ages of cases 1 and 2 when these patients were initially assessed, not much weight had been given to their MRI appearances; it was in the assessment of case 3 (a normotensive young male who was being investigated for a possible leukodystrophy) that the significance of both his abnormal blood film and young male who was being investigated for a possibility of neuroacanthocytosis in any patient presenting with unexplained chorea, as the MRI appearances are so variable.

Acknowledgements

We are grateful to the Dr A Spillane and the late Professor S Bundy for their evaluation and referral of case 1.

D J Nicholl, I Sutton
Department of Neurology, Queen Elizabeth Hospital, Birmingham, UK

M T Dotti
Department of Neurological and Behavioral Sciences, Universita’ di Siena, Siena, Italy

S G Supple
Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia

A Danek
Neurologische Klinik, Ludwig-Maximillians Universitaet, Munich, Germany

M Lawden
Department of Neurology, Leicester Royal Infirmary, Leicester, UK

Correspondence to: Dr D J Nicholl, Department of Neurology, Queen Elizabeth Hospital, Birmingham B15 2TH, UK; d.j.nicholl@bham.ac.uk
doi: 10.1136/jnnp.2003.026781

Competing interests: none declared

References

Disruption of facial affect processing in word deafness

Word deafness (also known as auditory agnosia for speech, or as auditory verbal agnosia) is a rare neurobehavioral syndrome characterised by an inability to understand spoken language in spite of intact hearing, speaking, reading, writing, and ability to identify non-speech sounds. The lesions associated with this condition tend to be bilateral and symmetrical in nature, and include cortical-subcortical tissue of the anterior part of the superior temporal gyr. However, Heschl’s gyrus is not always damaged completely in the left hemisphere. Moreover, there have been documented cases of word deafness caused by unilateral left hemisphere cortical and subcortical lesions. Although these lesions are anatomically different, they represent an effective partial hemispheric disconnection.

Hemispheric disconnection has been associated with unusual disruptions of emotional processing. Bowers and Heilman’s reported a patient with a lesion of the deep white matter of the right occipito-temporo-parietal region. This patient could name famous faces and discriminate affectively neutral faces, but could not name facial emotions or select emotional faces reflecting a named emotion. Bowers and Heilman hypothesised a visual-verbal disconnection resulting in an anomia for affective faces. More recently, Bowers, Bauer, and Heilman further articulated this idea, suggesting that this patient’s performance resulted from a disconnection between a hypothesised non-verbal affect lexicon in the right hemisphere and the verbal lexicon in left hemisphere, which normally communicate via the deep white matter pathways damaged in their patient. The documented association between hemispheric disconnection and anomia for facial emotion raises the possibility that similar deficits in emotion processing may be observed in word deafness.

Case report

WD1 was a 45 year old man who had suffered a left posterior temporal lobe hemisphere CVA two years previously. MRI had demonstrated an acute lesion of the left temporal lobe and a chronic lesion of the right temporal lobe. His new stroke produced an initial Wernicke’s aphasia. A pre-existing high frequency sensory hearing loss was also documented. By 18 months after the stroke, the aphasia had resolved and WD1 underwent formal neuropsychological testing with the following results.

- Auditory comprehension was limited to certain defective information, and consistent with a visual-verbal disconnection. This finding

- He was able to differentiate and accurately recognise a range of environmental sounds, although he had trouble with high pitched sounds. His recognition was fast and accurate.

- He had no apraxia or other motor problems, and he was able to communicate by gestures.

Overall, the results of his neuropsychological evaluation were within normal limits. His specific deficits were consistent with those seen in word deafness.

Emotion processing

We administered a modified version of the Florida Affect Battery (FAB), including both facial and vocal prosody subtests, in an attempt to determine whether word deafness was associated with a disruption in the processing of affective prosody. The FAB consists of 10 subtests that evaluate emotion processing by different modalities: visual (facial expression), auditory (prosody), and visual/auditory cross-modal. WD1’s performance was compared with that of 20 healthy adult controls. The test was modified, in that all instructions and emotion labels were presented in written form rather than orally. WD1 performed at chance level on the prosody tasks, regardless of their affective content. This may have been related to a premonihed occupational sensory hearing loss. The possibility that his word deafness also contributed to his poor performance cannot be ruled out. However, the relative influence of word deafness cannot be determined in the absence of control subjects with impaired hearing. WD1 was able to complete the visual subtests of the FAB, and his ability to discriminate facial identity and facial affect was within normal limits (table 1). His ability to match a stimulus facial expression with one from a target array was also within normal limits. However, he was moderately impaired relative to controls in his ability to match a printed affective name to facial expressions. He was also severely impaired in his ability to select the correct affective face from an array of faces when presented with a printed emotional label—that is, happy, sad, angry, frightened, neutral—despite intact reading and ability to discriminate affective facial expressions.

Discussion

WD1’s pattern of performance on the FAB was identical to that of Bowers’ and Heilman’s patient, and consistent with a visual-verbal disconnection. This finding

Table 1 Florida Affect Battery results

<table>
<thead>
<tr>
<th>Face discrimination</th>
<th>Affect discrimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>Discrimination</td>
</tr>
<tr>
<td>Name the affect</td>
<td>Discrimination</td>
</tr>
<tr>
<td>Select the affect</td>
<td></td>
</tr>
<tr>
<td>Match the affect</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Face discrimination</th>
<th>Affect discrimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>Discrimination</td>
</tr>
<tr>
<td>Name the affect</td>
<td>Discrimination</td>
</tr>
<tr>
<td>Select the affect</td>
<td></td>
</tr>
<tr>
<td>Match the affect</td>
<td></td>
</tr>
</tbody>
</table>

FAB, Florida Affect Battery. Z scores are based on the distribution of the control group. WD1’s score is significantly different from controls, at alpha<0.05.

www.jnnp.com
raises the possibility that a very specific disturbance of visual affect processing is a component of the word deafness syndrome. However, many neurocognitive syndromes lack a unitary functional basis and instead are an artefact of the behavioural geography of the brain. That is probably so with the affective processing disturbance observed in this case. The documentation of intact naming of affect in another word deafness case would answer this question definitively. At the same time, the functional auditory deficits and characteristic neuroanatomy of word deafness raise intriguing questions about the status of auditory emotion processing in word deafness, in view of this patient’s preserved ability to identify non-speech sounds.

K W Greve, M T Heinline
Department of Psychology, University of New Orleans, LA, USA

K W Greve, C L Joffe, K J Bianchini
Jefferson Neurobehavioral Group, University of New Orleans, LA, USA

K J Bianchini
Department of Psychology, University of New Orleans, LA, USA

Correspondence to: Dr K W Greve; kgreve@uno.edu
doi: 10.1136/jnnp.2003.021790

References
5 Shallice T. From neuropsychology to mental structure. Cambridge, UK: Cambridge University Press, 1988

A case of acute urinary retention caused by periaqueductal grey lesion

Diseases of the central nervous system often cause disturbances in micturition. These diseases include lesions in the spinal cord, pons, cerebellum, hypothalamus, basal ganglia, and cerebrum. Of these regions, the dorsomedial pontine tegmentum (pontine micturition centre, PMC), frontal lobe, and sacral spinal cord are considered important in controlling micturition. Recent studies in healthy humans using positron emission tomography (PET) have shown a significant increase in blood flow in the PMC and medullary periaqueductal grey (PAG) during micturition and urine storage.1–3 Thus, in addition to the PMC, the PAG may play an important role in micturition control. However, to our knowledge, there is no clinical report that identifies the role of the PAG in micturition. Here we report a case of acute urinary retention caused by a small lesion in the PAG. A favourable response to steroid therapy resulted in the normalisation of micturition.

Case report
A 31 year old man had sudden voiding difficulty resulting in urinary retention and was referred to a neurologist. Although no particular abnormalities were observed except for an abnormal signal intensity on magnetic resonance imaging (MRI) in the right dorsal portion of the midbrain, he was suspected to have a demyelinating or inflammatory disease and 30 mg of oral prednisolone for two weeks was then tapered at a rate of 10 mg/week. After the steroid therapy was initiated, the patient’s symptoms and the PAG lesion on subsequent MRI of the brain improved and he was able to void (fig 1B). However, the inability to void recurred, and a second course of pulsed steroid therapy was given. Day by day his symptoms improved again and resolved completely.

Comment
The patient reported here presented with acute urinary retention and diminished bladder sensation. The only abnormality detected by imaging, laboratory, and electrophysiological studies was a small PAG lesion. Therefore, we concluded that the PAG lesion was responsible for his symptoms. Unfortunately, we could not establish a diagnosis. However, on the basis of the favourable response to steroid therapy he was suspected to have a disease caused by some immunological abnormality.

Blok et al reported that in human PET studies the right dorsomedial pontine tegmentum and the PAG were significantly activated during micturition.1 In addition, the results of various studies also suggest that the PAG, especially the right dorsal part, plays a critical role in the control of micturition, possibly as the relay centre from the spinal cord to the PMC.1–3 The PAG lesion in the present case was located at the site identified in PET studies to be significantly activated during micturition. Although more similar cases are needed to establish a true relation, our findings in the present case provide direct clinical evidence of the role of the PAG in integrating the micturition reflex in humans.

H Yaguchi, H Soma, Y Miyazaki, J Tashiro, I Yabe, S Kikuchi, H Sasaki
Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

H Kakizaki
Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

5 Shallice T. From neuropsychology to mental structure. Cambridge, UK: Cambridge University Press, 1988

J Neurol Neurosurg Psychiatry 2004;75:1200–1207

www.jnnp.com
Here we present a case of a 53-year-old man with a history of essential hypertension suddenly developed right hemiparesis and cerebellar ataxia in February 2000. He was admitted to a hospital where radiological examinations showed a left upper brainstem haemorrhage (Fig 1A). His neurological state gradually improved. However, in October 2001 a severe, slowly progressive tremor arose in his right upper extremity. It was severely disabling and he could not use his right arm. He was admitted to our hospital in December 2001.

On admission, he was alert and oriented. His speech was mildly dysarthric and slurred. There was patellar tremor. Mild hemiparesis with increased stretch reflexes and Babinski sign were noted on the right side. There were mild deficits of position, vibratory sense, and superficial sensation of light touch and pain in his right upper and lower extremities. Dysmetria was more pronounced on the right. Because of severe truncal and gait ataxia, he could not remain upright without support; he was unable to walk even with assistance. There was coarse and severe tremor in the right upper extremity. It persisted at rest and its amplitude increased during maintenance of a fixed posture and intentioned voluntary movements. It rendered his right arm useless and prevented him from feeding and caring for himself. He was exhausted because of the severe tremor that persisted throughout his waking hours.

Surface electromyograms showed rhythmic grouping discharges of 3.6 Hz in the right forearm muscles. His preoperative score on the Tremor Rating Scale (TRS) for his right upper extremity (Part A, score 5) was 11. Magnetic resonance imaging (MRI) study (December 2001) showed a haemosiderin ring around the lesion in the left pontine tegmentum (B, arrow) and a high signal intensity area in the left inferior olivary nucleus indicating hypertrophic olivary degeneration (C). Location of the electrode superimposed on the frontal (D) and lateral (E) view of a selective third ventriculography. The target point is indicated by the asterisk. CT scan demonstrating the coagulative lesion made by the left Gpi pallidotomy (arrow). The CT scan was carried out 10 days after pallidotomy. AC, anterior commissure; PC, posterior commissure; ML, midline.

Combination of thalamic Vim stimulation and Gpi pallidotomy synergistically abolishes Holmes' tremor

The recent report of Kim et al., who demonstrated that stereotactic surgical ablation of the thalamic nucleus ventromedialus (Vim) markedly improved Holmes' tremor in a patient with midbrain tumour, corroborates our earlier findings. In their report, Vim thalamotomy alleviated tremor in both the distal and proximal segments of the upper extremity. However, controversy continues to surround the advisability of using the distal upper extremity tremors because the placement of larger lesions carries increased risks and the somatotopy of the proximal or truncal muscles remains obscure in this subgroup of Vim. Here we present a patient with a pontine haemorrhage in whom the combination of thalamic Vim deep brain stimulation (DBS) and globus pallidus internus (Gpi) pallidotomy abolished Holmes' tremor.

Figure 1 (A) Computed tomography (CT) scan showing a haematoma in the pontine tegmentum. (B, C) Axial views of T2-weighted magnetic resonance images at chronic stage (22 months after onset) demonstrating a haemosiderin ring around the lesion in the pontine tegmentum (B, arrow) and a high signal intensity area in the left inferior olivary nucleus indicating hypertrophic olivary degeneration (C). (D, E) Location of the electrode superimposed on the frontal (D) and lateral (E) view of a selective third ventriculography. The target point is indicated by the asterisk. (F) CT scan demonstrating the coagulative lesion made by the left Gpi pallidotomy (arrow). The CT scan was carried out 10 days after pallidotomy. AC, anterior commissure; PC, posterior commissure; ML, midline.

Surface electromyograms showed rhythmic grouping discharges of 3.6 Hz in the right forearm muscles. His preoperative score on the Tremor Rating Scale (TRS) for his right upper extremity (Part A, score 5) was 11. Magnetic resonance imaging (MRI) study (December 2001) showed a haemosiderin ring around the lesion in the left pontine tegmentum (fig 1B). On T2-weighted images, a high signal lesion was seen in the left inferior olive, as consistent with the hypertrophic olivary degeneration (fig 1C). As sequential pharmacotherapy using clonazepam (3 x 0.5 mg/day) and benserazide/levodopa (3 x 25/100 mg per day) was only slightly effective, he was referred for surgery. Prior informed consent was obtained from the patient and his family.

In January 2002, a quadripolar DBS electrode (Model 3387; Medtronic Inc., Minneapolis, MN, USA) was implanted in the left thalamic Vim nucleus with the aid of MRI, third ventriculography, and microelectrode guidance, as previously described. The optimal target was determined to be 7 mm posterior and 14.5 mm lateral to the midpoint of the anterior to posterior commissure (AC–PC) line, and on the AC–PC line. The most ventral contact was placed precisely on the target point (fig 1D, E). As stimulation tests, performed for 5 days, confirmed the beneficial effects of DBS, a programmable pulse generator (Soterra, Model 7426; Medtronic Inc.) was implanted. His postoperative course was uneventful.

After extensive trials, stimulation was carried out using contacts 0 and 1 (fig 1D, E). The optimal stimulation parameters were determined to be 160 Hz frequency, 90 µsec pulse width, and 2.9 V and 3.4 V amplitude at the first and final session. Stimulation with amplitude exceeding 3.4 V induced unpleasant electrical paraesthesia on the right side of his face and right upper extremity. Under optimal stimulation, the tremor was markedly alleviated in the distal part of his right arm: the TRS score for his upper extremity tremor (Part A, score 5) was reduced to 6. Upon discontinuation of stimulation, the tremor reappeared immediately and returned to the preoperative state. The proximal tremor of his right arm was unresolved.

After discharge, he visited our outpatient department once a month. In January 2003, he complained of gradual worsening of the remaining proximal tremor; the distal tremor remained completely suppressed by thalamic Vim stimulation. We discussed Gpi pallidotomy and obtained informed consent prior to the procedure.

In April 2003, left Gpi pallidotomy was performed according to the method we described previously. The optimal target for the posteroverentral part of the Gpi was determined to be 2 mm anterior and 20 mm lateral to the midpoint of the AC–PC line, and 1 mm dorsal to the floor of the third ventricle. After creating a test lesion (42 °C, 60 sec), a permanent anatomical lesion was made by heating the electrode tip to 72 °C for up to 70 sec. The electrode was moved in 2 mm increments in the medial, lateral, and dorsal directions, and the lesioning process was repeated to increase the overall size of the lesion (fig 1F). Gpi pallidotomy completely abolished his proximal tremor. However, it produced only a small effect on his distal tremor and discontinuation of Vim stimulation resulted in its reappearance at almost the preoperative level. Without stimulation, the TRS score for his upper extremity tremor (Part A, score 5) was 5. The combination of Vim stimulation and Gpi pallidotomy had synergistic effects in abolishing Holmes’ tremor in our patient. The therapeutic benefits remain unchanged at the time of writing and the TRS score for his upper extremity tremor (Part A, score 5) is 0. His palatal tremor did not respond to Vim stimulation and pallidotomy and remains unresolved.
Stereotactic Vim surgery, either thalamotomy or pallidotomy, is a mainstay in the surgical treatment of parkinsonian or essential tremors.\(^6\) Its efficacy in tremor suppression is superior to that of pallidotomy in parkinsonian patients. However, as evidenced by our case, it does not always produce satisfactory results in patients with Holmes’ tremors, particularly with respect to their proximal tremors. The basal ganglia outflow pathway from the GPi exerts a direct influence on not only the thalamus but also the brainstem motor centres such as the pedunculopontine nucleus related to the mesencephalotegmental field that controls the axial and proximal appendicular musculature via the descending reticulospinal tract. Therefore, unlike thalamic surgery, which interrupts the thalamo-cortical output that controls distal appendicular musculature via descending corticospinal and corticobulbar tracts, GPi pallidotomy influences the control of otherwise inaccessible axial and proximal muscles. This may be the reason why GPi pallidotomy produced a marked alleviation of the proximal tremor in our patient. Due to the limited efficacy of thalamic Vim surgery on proximal tremors, the use of other or additional surgeries with greater effects—for example, pallidal surgery or subthalamic area stimulation,\(^9\) should be considered for the treatment of Holmes’ tremor.

S Goto, K Yamada
Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

Correspondence to: S Goto, MD, PhD, Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; sgo@gmail.com

doi: 10.1136/jnnp.2003.023077

References

No association of the mitochondrial DNA A12308G polymorphism with increased risk of stroke in patients with the A3243G mutation

There is a striking phenotypic variability among patients with the A3243G mutation of mitochondrial DNA (mtDNA), the most common heteroplasmic mtDNA mutation. It is responsible for ~80% of cases of MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like syndrome)\(^8\), and is also associated with other phenotypes including maternally inherited diabetes and deafness (MIDD) and chronic progressive external ophthalmoplegia (CPEO).\(^7\)

Only 50% of patients carrying the A3243G mutation have stroke-like episodes\(^1\) and the reason for this clinical variability remains poorly understood. Although the percentage level of the A3243G mutation in clinically relevant tissues appears to be important, this relationship is far from clear.\(^1\) High percentage levels of the A3243G mutation in muscle are associated with stroke-like episodes, but approximately one in five patients harbouring >80% A3243G in muscle remain stroke free,\(^1\) suggesting that additional environmental and genetic factors may influence the phenotypic expression of this mutation.

One possibility is that a background mtDNA sequence variation influences phenotype. There is a well-received association between the mtDNA genetic background (or haplogroup) and the risk of developing visual failure in another mtDNA disorder, Leber’s hereditary optic neuropathy,\(^9\) and a similar mechanism may influence the incidence of stroke-like episodes in patients harbouring the A3243G mutation. Intrafamilial clustering of clinical phenotypes in A3243G patients would indirectly support a role for the mtDNA background, though our own clinical experience suggests that there is significant clinical variability between families.

Pulkes et al.\(^2\) have previously reported an increased risk of stroke associated with the presence of a homoplasmic, polymorphic (A12308G) variant in 48 patients with the A3243G mutation.\(^2\) The A12308G polymorphism, which is also present in the second mitochondrial tRNA gene encoding leucine (tRNA\(_{\text{Leu}}\)\(^{\text{UUR}}\)) gene, occurs with a frequency of 21% in a population of European origin and defines the mtDNA super-haplogroup U/K together with two other polymorphisms, a 249 bp fragment spanning this mtDNA region was polymerase chain reaction (PCR)-amplified using a forward primer (5’ GTTGGTAATCTGGACAACAGG 3’; nt 12164–12189) and a reverse primer (5’GGTTGACGAGGTTGGAAGGT 3’; nt 12412–12390). Amplified products were purified and sequenced using BigDye terminator cycle sequencing chemistries on an ABI 377 automated DNA sequencer (Applied Biosystems, Warrington, UK).

Results

The A12308G polymorphism was present in 32 of the 107 patients, while 56 had a history of stroke-like episodes. Nine of the 56 patients with a history of a stroke and 23 of 51 patients without a history of stroke harboured the A12308G polymorphism. Every patient with the A12308G polymorphism also harboured the G12372A variant, indicating that they belong to the same mtDNA super-haplogroup U/K.

As shown in fig 1, our study alone revealed an apparent negative association between stroke-like episodes and the A12308G polymorphism, an observation in direct contrast to the positive association found by Pulkes et al.\(^2\) Meta-analysis of all available data however, including the present study (n = 107) and the published study of Pulkes et al.\(^2\) (n = 48), revealed that 16 of the 77 patients with a history of a stroke and 25 of 78 patients without stroke harboured the A12308G polymorphism. This did not show a statistically significant association between the A12308G polymorphism and stroke-like episodes (χ2 = 2.25, p = 0.112).

Discussion

The aim of our study was to examine whether a previously described association between the A12308G polymorphism and an increased risk of stroke in patients with the A3243G mutation was reflected in a larger study group. In agreement with previous reports, 52% of our patients experienced stroke-like episodes\(^2\) and 30% harboured the A12308G polymorphism, confirming that our cohort of

<table>
<thead>
<tr>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.97 (0.49 to 1.90)</td>
</tr>
<tr>
<td>OR = 0.23 (95% CI)</td>
</tr>
<tr>
<td>OR = 0.55 (95% CI)</td>
</tr>
</tbody>
</table>

Figure 1 Meta-analysis showing odds ratios (OR) and 95% confidence intervals (CI) for the original study by Pulkes et al.\(^2\) The data generated by this study, and the combined dataset including both studies. The squares represent the OR, with the size proportional to the study size. The horizontal lines are the CI for the OR. The diamond shows the OR for the combined dataset with CI that overlap 1, indicating a non-significant result.
A3243G index cases formed a representative sample. Despite studying a larger cohort of patients, we were not able to confirm the positive association between the A12308G polymorphism and an increased risk of stroke in patients with the A3243G mutation as reported previously.7 Meta-analysis of all the available data failed to provide any clear association between the A12308G polymorphism and stroke-like episodes. The clinical diversity associated with the A3243G mutation clearly involves multiple factors. We have previously shown a correlation between clinical phenotype and mutation load in muscle.8 Age may well be a contributing factor, although there was a tendency for patients with stroke-like episodes to be younger than those without. This argues against age as a risk factor for stroke-like episodes, as seen in common stroke.

Importantly our findings serve to highlight the difficulty of performing association studies on small numbers of patients. This is particularly difficult for mitochondrial genetic association studies because of the high variability of the mitochondrial genome. Understanding the phenotypic differences between patients with specific, pathogenic mtDNA mutations will ultimately involve studies of large cohorts of patients, unless we are able to gain clues from experimental studies that may highlight factors involved in the altered expression or segregation of mtDNA mutations.

Acknowledgements

The authors thank Geoff Taylor (University of Newcastle upon Tyne) for help with the sequencing. This study was supported by a fellowship from the Australian NHMRC. and RWT) and the Wellcome Trust (PFC, DMT and RWT). The authors thank Geoff Taylor (University of Newcastle upon Tyne, UK) for help with the sequencing. This study was supported by a fellowship from the Australian NHMRC.

<table>
<thead>
<tr>
<th>Symptom or problem</th>
<th>Recorded in the hospital records (n = 92)</th>
<th>Elicited from patients and relatives at home interviews (n = 92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>55 (60)</td>
<td>51 (55)</td>
</tr>
<tr>
<td>Headache</td>
<td>49 (53)</td>
<td>48 (52)</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>35 (38)</td>
<td>44 (48)</td>
</tr>
<tr>
<td>Sensory loss</td>
<td>32 (35)</td>
<td>37 (40)</td>
</tr>
<tr>
<td>Cognitive loss</td>
<td>30 (33)</td>
<td>42 (46)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>29 (32)</td>
<td>23 (25)</td>
</tr>
<tr>
<td>Personality change</td>
<td>14 (15)</td>
<td>28 (30)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>13 (14)</td>
<td>44 (48)</td>
</tr>
</tbody>
</table>

Values are n (%).

References

Early symptoms of brain tumours

Malignant cerebral glioma is the most common adult primary brain tumour but surprisingly few studies report how patients with early symptoms present in primary or secondary care. A retrospective audit in south east Scotland found considerable variation in the referral of patients with primary brain tumours: only one quarter of 439 patients were initially referred directly to specialist secondary care. A retrospective audit in south east Scotland found considerable variation in the referral of patients with primary brain tumours: only one quarter of 439 patients were initially referred directly to specialist secondary care. A retrospective audit in south east Scotland found considerable variation in the referral of patients with primary brain tumours: only one quarter of 439 patients were initially referred directly to specialist secondary care.
experience might help further define the subacute presentation of cognitive and personality change and their relation to other complaints. Second, the predictive power of neurophysiological symptoms pointing to general practitioners could be explored using existing large primary care research datasets. Third, relatives of patients referred urgently should be asked to attend with them to clarify aspects of the history that the patient may be unaware of. Beginning to discuss openly the difficulty of earlier diagnosis may help families come to terms with this last aspect of their concern. This might also help repair unnecessary rifts in relations with general practitioners, who are best placed to provide local support and palliative care these patients so often need.

Acknowledgements
We thank Sue Hall and Maureen O'Connor for help collecting the data and patients and relatives for agreeing to be interviewed. Data collection was supported by the Cancer Research Campaign, grant number CP 1017, and writing up by the BMA TP Granton Research Award for Health Education in Cancer. The views expressed do not represent those of either organisation.

E Davies
Department of Palliative Care and Policy, Guy's, King's and St Thomas' School of Medicine, Weston Education Centre, Cuthcombe Road, Denmark Hill, London SE5 9RJ, UK

C Clarke
National Hospital for Neurology and Neurosurgery, University College Hospitals, Queen Square, London WC1N 3BG, UK

Correspondence to: Dr Elizabeth Davies; elizabethdavies@dcdocrats.org.uk
doi: 10.1136/jnnp.2003.033308

Competing interests: none declared

References

Five year follow up of a patient with spinal and bulbar muscular atrophy treated with leuprorelin

Spinal and bulbar muscular atrophy (SBMA; MIM 313280) is an X linked late onset motor neuron disease characterised by slowly progressive proximal and bulbar muscle weakness, muscle atrophy, postural hand tremor, gynaecomastia, and endocrine disturbances 1–5 that are signs of partial androgen resistance. SBMA is caused by the expansion of a trinucleotide CAG repeat in the first exon of the androgen receptor (AR) gene encoding a polyglutamine stretch. Recently, Katsuno et al 6 reported that leuprorelin, a luteinising hormone releasing hormone (LHRH) agonist, reduces the level of testosterone release from the testis, rescued motor dysfunction and nuclear accumulation of mutant ARs in a male transgenic mouse model of SBMA. This result indicates that ligand dependent nuclear translocation of mutant ARs containing expanded polyglutamine is the main source of the pathogenesis of SBMA, and that leuprorelin suppresses this translocation. We read this report with great interest, because we followed up a patient with SBMA, who has been administered leuprorelin for 5 years to treat his coexisting prostate cancer.

Case report
A 75 year old male noticed bilateral finger tremor at age 57. At age 63, he noticed weakness in his arms. He was admitted to our hospital in December 1991, when he was 64 years old. On initial examination, he had bilateral gynaecomastia. Neurological examinations revealed facial weakness and lingual atrophy with fasciculations. Mild muscular atrophy was observed in the proximal parts of the upper extremities. Muscle strength was approximately in the range of 3/5 to 4/5 in the proximal parts, and 5/5 in the distal parts of the upper extremities. Fasciculations were observed in the lips, tongue, and in the lower extremities. Deep tendon reflexes were either lost or markedly diminished. Babinski signs were absent. Laboratory examinations revealed that the serum creatine kinase (CK) level increased to 803 IU/L (normal range 43–239 IU/L), LH (5.9 IU/L; normal range 1.8–5.2 IU/L) and follicle stimulating hormone (20.5 IU/L; normal range 2.9–8.2 IU/L) levels were elevated. After his informed consent was obtained, high molecular weight genomic DNA was extracted from peripheral leucocytes of the patient according to standard protocols. Genetic analysis of the AR gene was performed and the expansion of a CAG repeat (45 repeats) in exon 1 of the AR gene was identified, leading to a diagnosis of SBMA.

At age 67, he developed weakness in the legs, and noticed difficulty in climbing up stairs or standing up from a chair. Serum CK levels gradually increased, reaching 7171 IU/L at age 70. In January 1998, when he was 71 years old, he was diagnosed as having prostate cancer, and was intramuscularly injected with 3.75 mg of leuprorelin every 28 days, because leuprorelin inhibits production of testosterone and dihydrotestosterone (DHT), which enhances the growth of prostate cancer cells. One month after the start of treatment, he noticed that his gait disturbance was rapidly exacerbated; however, the gait disturbance returned to the level before the start of treatment by April 1998. After the episode of transient exacerbation, his muscle weakness and atrophy exhibited no apparent deterioration to date. On the contrary, an improved muscle strength was recorded in the neck flexor, biceps brachii, and quadriiceps femoris muscles. Furthermore, serum CK levels gradually decreased from 1717 IU/L to 834 IU/L after the leuprorelin treatment (see fig 1). Levels of LH (<0.6 IU/L) or testosterone (<0.1 IU/L; normal range 1.2–8.0 IU/L) were decreased by the leuprorelin injections.

Discussion
The experience of a 3 year follow up of this patient treated with leuprorelin is highly indicative of the following. Firstly, leuprorelin treatment induced a transient deterioration of the motor function in humans, as demonstrated in a transgenic mouse model of SBMA. 7,8 Second, after the initial transient deterioration, long term stabilisation of the motor function was obtained. Finally, leuprorelin treatment was effective even when the treatment was started in the advanced stage of the disease, although the patient’s muscle weakness and atrophy have not completely disappeared. These findings provide grounds for the proposal made by Katsuno et al 6 that leuprorelin is a promising candidate for the treatment of SBMA.

At least nine neurodegenerative diseases are known to be caused by expanded CAG repeats. SBMA is unique among these diseases because the disease protein, AR, has a specific ligand, testosterone. It has been demonstrated that the nuclear translocation of ARs is solely dependent on testosterone. Recently, a transgenic mouse model carrying full length AR containing 97 glutamine repeats has been generated, and this model showed progressive muscular atrophy and weakness. 9 These phenotypes were markedly enhanced in male transgenic mice, which were significantly rescued by castration. Female transgenic mice exhibited only a few manifestations that markedly deteriorated with testosterone administration. Furthermore, in a Drosophila model of SBMA, it has been demonstrated that androgen agonists induce nuclear translocation of the mutant ARs and toxicity. 10 Taken together, these results raise the possibility that blockade of nuclear translocation of the mutant ARs by hormonal intervention can provide therapeutic benefits in SBMA.

LHRH agonists including leuprorelin have been used for the treatment of prostate cancer. These drugs eventually inhibit LH production, which in turn inhibits production of testosterone and DHT, on which growth of prostate cancer cells depend. The alleviation or improvement of muscular weakness and decreased serum CK level in our patient may be due to the anti-androgenic effects of leuprorelin. Interestingly, he noticed rapid exacerbation of gait disturbance one month after the administration of leuprorelin. It has been demonstrated that when LHRH agonists are administered continuously, the pituitary gland is initially stimulated, but after 5–12 days, the pituitary gland becomes inhibited.
desensitised and stops releasing LH. When that occurs, the testes stop releasing testosterone. During the period of the initial stimulation, more LH is released, consequently there is a surge in the secretion of testosterone and DHT from the testes (so consequently there is a surge in the secretion of androgen surge). That occurs, the testes stop releasing testosterone and LH is desensitised and stops releasing LH.

In conclusion, we report the beneficial effect of leuprorelin on SBMA. Our current experience warrants further investigations to determine whether leuprorelin may be of benefit for the treatment of SBMA in humans.

T Shimohata, T Kimura, M Nishizawa
Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan

O Onodera
Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, Niigata, Japan

S Tujii
Department of Neurology, University of Tokyo, Tokyo, Japan

Correspondence to: T Shimohata, Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan; t-shimo@bri.niigata-u.ac.jp

doi: 10.1136/jnnp.2003.030064

Received 9 October 2003
In revised form 9 December 2003
Accepted 14 December 2003

Competing interests: none

References

Cessation of migraine following central retinal vein occlusion

Cases of retinal vein occlusion with migraine have been described since 1882.1 An interesting case of central retinal vein occlusion (CRVO) which coincided with complete cessation of longstanding, severe migraines is reported.

Case report
A 44 year old lady developed classic migraine at the age of 11 years. Her symptoms comprised a visual aura of flashing lights followed by severe headache (not localised to one side), photophobia, and nausea, which generally lasted for two days. There were no identifiable triggers. Her migraines consisted of sumatriptan, which she took on the eye department.

At presentation to the eye department one week after the initial visual loss, her visual acuity was 6/9 right and 6/4 left. There was a right relative afferent pupillary defect. Funduscopy revealed retinal haemorrhages in all four quadrants with a swollen optic disc. A diagnosis of non-ischaemic CRVO was made. She was advised to take aspirin 75 mg daily.

On follow up, her visual acuity continued to improve with resolution of the retinal haemorrhages and the disc oedema. The following investigations were normal: full blood count, erythrocyte sedimentation rate, electrolytes, fasting glucose, fasting cholesterol, and plasma protein electrophoresis. General medical examination was normal. She is a non-smoker with no family history of cardiovascular disease. At the 18 month follow up her visual acuity was 6/5 right and 6/4 left. There was no relative afferent pupillary defect. The fundal appearance returned to normal.

Follow up to date is two years and she has not experienced a single migraine since developing the CRVO. There have been no other factors to account for the cessation of her migraines during this period.

Discussion
There have been numerous reports of retinal vaso-occlusion and migraine in the context of “complicated migraine.”1 We have presented an interesting patient who instead experienced complete cessation of migraine in association with the development of a CRVO. In the natural history of migraine there is a gradual reduction in severity and frequency of attacks with age.2 The abrupt cessation of migraine following development of a CRVO suggests a causal relationship. She had no risk factors for a retinal vascular event.

It has been proposed that prophylactic use of platelet antagonists, such as aspirin, may reduce the occurrence of migraine. Serotonin is released locally in cerebral tissue shortly before the onset of a migraine attack. Since platelets contain all of the plasma serotonin, it seems unlikely that aspirin was solely responsible for the cessation of migraine in our patient, however this remains a possibility.

The pathophysiology of migraine is complex but involves neuronal events linked to alterations in the calibre of intracerebral blood vessels. During a migraine aura cerebral blood flow decreases. The subsequent hyperaemia leads to headache by activation of fibres originating in the trigeminal ganglion. These trigeminovascular afferents reside primarily within the ophthalmic division of the trigeminal nerve.3 The retinal vasculature is very similar to the cerebral vasculature both in structure and response to vasoactive substances.2 This probably accounts for cases of “complicated migraine” leading to retinal vein occlusion.

We postulate that an initial neuronal event occurred in our patient that resulted in a functional alteration in her trigeminovascular system leading to the complete cessation of migraine. This neuronal event also produced a temporary decrease in central retinal artery perfusion and the subsequent development of a CRVO.2 This case therefore demonstrates the potential for intracerebral events to influence the retinal vasculature.

S P Meredith, D K Newman
Department of Ophthalmology, Addenbrooke’s Hospital, Cambridge, UK

Correspondence to: S P Meredith,spmeredith@doctors.org.uk

doi: 10.1136/jnnp.2003.024869

Competing interests: none declared

References
White matter abnormalities on MRI in neuroacanthocytosis

D J Nicholl, I Sutton, M T Dotti, S G Supple, A Danek and M Lawden

J Neurol Neurosurg Psychiatry 2004 75: 1200-1201
doi: 10.1136/jnnp.2003.026781

Updated information and services can be found at:
http://jnnp.bmj.com/content/75/8/1200

These include:

References
This article cites 5 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/75/8/1200#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/