White matter abnormalities on MRI in neuroacanthocytosis

Neuroacanthocytosis denotes a group of uncommon heterogeneous neurodegenerative disorders associated with acanthocytosis in the absence of any lipid abnormality. A variety of modes of inheritance have been proposed (X linked and autosomal recessive) and mutations in two genes have been identified, the XK gene (in the X linked McLeod phenotype) and the CHAC gene (9q21; autosomal recessive). A wide variety of clinical features including chorea, orofacial dyskinesia, dysphagia, dysarthria, peripheral neuropathy, myopathy, seizures, and dementia has been described in these disorders.

Case reports

Case 1

This patient was briefly described as case 19 in the report of Danek et al. He was a 61 year old white male who had been well until 3 years previously, when he took early retirement from teaching owing to “disillusionment”. He subsequently developed a progressive dementing illness, associated with facial tics, grunting noises, dysarthria, and chorea over the subsequent 3 years. There was no family history of neurodegenerative disease. He first presented to a neurologist having had an isolated generalised tonic–clonic seizure. On examination, he had a frontal dementia (Mini Mental State Examination (MMSE) score of 27/30) with evidence of self neglect and choreiform movements in all four limbs, and a prominent facial tic. He had little insight into his current illness. All tendon reflexes were absent. Investigation demonstrated numerous acanthocytes on blood films. Creatine kinase was raised at 1125 IU/l. Kell antigens were only weakly positive, which conformed to the McLeod phenotype. DNA analysis for Huntington’s disease was negative, but a R133X mutation. An MRI scan of the head showed mild increased signal within white matter on T2, protoxin density and fibre linked image formatter (FLAIR) MRI showed abnormally high signal in the periventricular white matter on T2, proton density and fibre linked image formatter (FLAIR) MRI (fig 1B). Kell serology was normal, with Kell antigen. Analysis of the XK gene identified a R133X mutation. An MRI scan of the head showed mild increased signal within white matter bilaterally, with involvement of the corpus callosum and cerebellar atrophy, but without contrast enhancement.

Discussion

Both computed tomography and MRI have been reported to show caudate and more generalised cerebral atrophy in neuroacanthocytosis. Although increased signal on T2 weighted MRI in the caudate and putamen has been noted previously, the increased signal throughout the cerebral hemispheres (including the corpus callosum in cases 1 and 3) reported here has not been reported previously. Extensive investigation for alternative causes of white matter abnormalities (vasculitic screen, and analysis

Figure 1 Axial T2 weighted (A) and sagittal (B) MRI from case 1, showing numerous areas of signal increase within the white matter, and involving the corpus callosum (arrow). (C) Axial T2 FLAIR MRI from case 2 showing mild signal increase within the white matter in the posterior periventricular area. (D) Blood film from case 3 showing numerous acanthocytes (arrow). Axial T2 weighted (E) and sagittal (F) MRI from case 3 showing similar, but less marked, white matter abnormalities to case 1, involving the corpus callosum (arrow).
of CSF, very long chain fatty acids, mitochon-
dria, white cell enzymes and plasma lysosomal enzymes) was negative and there was no history of hypertension. In view of the ages of cases 1 and 2 when these patients were initially assessed, not much weight had been given to their MRI appearances; it was in the assessment of case 3 (a normotensive young male who was being investigated for a possible leukodystrophy) that the signifi-
cance of both his abnormal blood film and
possibility of neuroacanthocytosis in any
patient presenting with unexplained chorea,7
as the MRI appearances are so variable.

Acknowledgements
We are grateful to the Dr J A Spillane and the late
Professor S Bunney for their evaluation and referral of
case 1.

D J Nicholl, I Sutton
Department of Neurology, Queen Elizabeth Hospital,
Birmingham, UK

M T Dotti
Department of Neurological and Behavioral Sciences,
Università di Siena, Siena, Italy

S G Supple
Institute of Haematology, Royal Prince Alfred Hospital,
Camperdown, Sydney, Australia

A Danek
Neurologische Klinik, Ludwig-Maximilians Universität,
Munich, Germany

M Lawden
Department of Neurology, Leicester Royal Infirmary,
Leicester, UK

Correspondence to: Dr D J Nicholl, Department of
Neurology, Queen Elizabeth Hospital, Birmingham
B15 2TH, UK; d.j.nicholl@bham.ac.uk
doi: 10.1136/jnnp.2003.026781

Competing interests: none declared

References
1 Walker RH, Morgello S, Davidoff-Feldman B, et al. Autosomal dominant choreo-
acanthocytosis with polyglutamine-containing
Huntington’s disease-like 2 can present as
a left posterior temporal lobe hemisphere
CVA two years previously. MRI had demon-
strated an acute lesion of the left temporal
lobe and a chronic lesion of the right
temporal lobe. His new stroke produced an
affect in his ability to select the correct affective
subtests of the FAB, and his ability to
discriminate facial identity and facial affect
was within normal limits (table 1). His ability
to match a stimulus facial expression with
one from a target array was also within
normal limits. However, he was moderately
impaired relative to controls in his ability to
match a printed affective name to facial
expressions. He was also severely impaired
in his ability to select the correct affective
face from an array of faces when presented
with a printed emotional label—that is, happy,
sad, angry, frightened, neutral—despite
intact reading and ability to discriminate
affective facial expressions.

Discussion
WDI’s pattern of performance on the FAB
was identical to that of Bowers’ and
Heilman’s patient,1 and consistent with a
visual-verbal disconnection. This finding

Disruption of facial affect
processing in word deafness
Word deafness (also known as auditory
agnosia for speech, or as auditory verbal
agnosia) is a rare neurobehavioural syndrome
characterised by an inability to understand
spoken language in spite of intact hearing,
speaking, reading, writing, and ability to
identify non-speech sounds. The lesions
associated with this condition tend to be
bilateral and symmetrical in nature, and
include cortical-subcortical tissue of the
anterior part of the superior temporal gyr.
However, Heschl’s gyrus is not always
damaged completely in the left hemisphere.
Moreover, there have been documented cases
of word deafness caused by unilateral left
hemispheric cortical and subcortical lesions.1
Although these lesions are anatomically
different, they represent an effective partial
hemispheric disconnection.

Hemispheric disconnection has been asso-
ciated with unusual disruptions of emotional
processing. Bowers and Heilman1 reported a
patient with a lesion of the deep white matter
of the right occipito-temporo-parietal region.
This patient could name famous faces and
discriminate affectively neutral faces, but
could not name facial emotions or select
emotional faces reflecting a named emotion.
Bowers and Heilman hypothesised a visual-
verbal disconnection resulting in an ana-
omia for affective faces. More recently, Bowers,
Bauer, and Heilman1 further articulated this
idea, suggesting that this patient’s perfor-
mance resulted from a disconnection
between a hypothesised non-verbal affect
lexicon in the right hemisphere and the
verbal lexicon in left hemisphere, which
normally communicate via the deep white
matter pathways damaged in their patient.
The documented association between
hemispheric disconnection and anosognosia
for facial emotion raises the possibility that
similar deficits in emotion processing may
be observed in word deafness.

Case report
WD1 was a 45 year old man who had suffered a
left posterior temporal lobe hemisphere
CVA two years previously. MRI had demon-
strated an acute lesion of the left temporal
lobe and a chronic lesion of the right
temporal lobe. His new stroke produced an
initial Wernicke’s aphasia. A pre-existing
high frequency sensory hearing loss was also
documented. By 18 months after the stroke,
the aphasia had resolved and WD1 under-
went formal neuropsychological testing with
the following results:

•Auditory comprehension was limited to
single (maximum of two syllables) con-
crete nouns—for example, square or circle
from the token test and adjectives such as
yellow or red. The words he did understand
had to be spoken slowly, loudly, and at
a low pitch. He seemed to have general
difficulty with rapid tonal transitions
that mimicked speech sounds, as in the
speech sounds perception test and the
seashore rhythm test.

•Reading comprehension was grossly
within normal limits. He did demonstrate
problems with complex syntax and evi-
denced occasional paraphasic errors. This
may have been residual from his acute
Wernicke’s aphasia. On the whole, his
speech was functional.

• He was able to differentiate and accurately
recognise a range of environmental
sounds, although he had trouble with
high pitched sounds. His recognition was
fast and accurate.

• He had no apraxia or other motor
problems, and he was able to communicate by
gestures.

Overall, the results of his neuropsychological
evaluation were within normal limits. His
specific deficits were consistent with those
seen in word deafness.

Emotion processing
We administered a modified version of the
Florida Affect Battery (FAB), including both
facial and vocal prosody subtests, in an
attempt to determine whether word deafness
was associated with a disruption in the
processing of affective prosody. The FAB
consists of 10 subtests that evaluate emotion
processing by different modalities: visual
(facial expression), auditory (prosody), and
visual/auditory cross-modal. WDI’s perfor-
mance was compared with that of 20 healthy
adult controls. The test was modified, in that
all instructions and emotion labels were
presented in written form rather than orally.

WDI performed at chance level on the
prosody tasks, regardless of their affective
content. This may have been related to a
premorbid occupational sensory hearing loss.
The possibility that his word deafness also
contributed to his poor performance cannot
be ruled out. However, the relative influence
of word deafness cannot be assessed, due to
the absence of control subjects with impaired
hearing.

WDI was able to complete the visual subtests of the FAB, and his ability
to discriminate facial identity and facial affect

Table 1 Florida Affect Battery
results

<table>
<thead>
<tr>
<th>FAB face subtests</th>
<th>Correct (%)</th>
<th>z Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>90</td>
<td>1.3</td>
</tr>
<tr>
<td>discrimination</td>
<td>85</td>
<td>–.8</td>
</tr>
<tr>
<td>Affect</td>
<td>80</td>
<td>–2.6</td>
</tr>
<tr>
<td>discrimination</td>
<td>Select the affect</td>
<td>75</td>
</tr>
<tr>
<td>Name the affect</td>
<td>Match the affect</td>
<td>90</td>
</tr>
</tbody>
</table>

WDI’s score is significantly different from controls, at alpha=0.05.
raises the possibility that a very specific disturbance of visual affect processing is a component of the word deafness syndrome. However, many neurocognitive syndromes lack a unitary functional basis and instead are an artefact of the behavioural geography of the brain. That is probably so with the affective processing disturbance observed in this case. The documentation of intact naming of affect in another word deafness case would answer this question definitively. At the same time, the functional auditory deficits and characteristic neuroanatomy of word deafness raise intriguing questions about the status of auditory emotion processing in word deafness, in view of this patient’s preserved ability to identify non-speech sounds.

K W Greve, M T Heimly
Department of Psychology, University of New Orleans, LA, USA

K W Greve, C L Jaffe, K J Bianchini
Jefferson Neurobehavioral Group, University of New Orleans, LA, USA

K J Bianchini
Department of Psychology, University of New Orleans, LA, USA

Correspondence to: Dr K W Greve; kgreve@uno.edu
doi: 10.1136/jnnp.2003.021790

References

A case of acute urinary retention caused by periaqueductal grey lesion

Diseases of the central nervous system often cause disturbances in micturition. These diseases include lesions in the spinal cord, pons, cerebellum, hypothalamus, basal ganglia, and cerebrum. Of these regions, the dorsomedial pontine tegmentum (pons micturition centre, PMC), frontal lobe, and sacral spinal cord are considered important in controlling micturition. Recent studies in healthy humans using positron emission tomography (PET) have shown a significant increase in blood flow in the PMC and micturition-related periaqueductal grey (PAG) during micturition and urine storage in healthy humans.1–3 T2-WI showing a reduction in the intensity of the PAG lesion after steroid therapy.

Figure 1 (A) T2-weighted magnetic resonance image (T2-WI) showing hyperintensity in the periaqueductal grey (PAG) where a significant increase in blood flow has been observed on positron emission tomography during micturition and urine storage in healthy humans. (B) T2-WI showing a reduction in the intensity of the PAG lesion after steroid therapy.

Comment
The patient reported here presented with acute urinary retention and diminished bladder sensation. The only abnormality detected by imaging, laboratory, and electrophysiological studies was a small PAG lesion. Although we were unable to establish a diagnosis despite the thorough work up, we considered the PAG lesion to be responsible for his urinary symptoms and a disease originating from an immunologic abnormality such as vasculitis, was suspected based on the MRI findings and the favourable response to the steroid therapy. Therefore, 1 g methylprednisolone was given intravenously for three days (steroid pulse therapy), followed by 60 mg oral prednisolone for two weeks which was then tapered at a rate of 10 mg/week. After the steroid therapy was initiated, the patient’s symptoms improved and he was able to void again by day 11. However, the inability to void recurred, and a second course of pulsed steroid therapy was given. Day by day his symptoms improved again and resolved completely.

H Yaguchi, H Soma, Y Miyazakizaki, J Tashiro, I Yabe, S Kikuchi, H Sasaki
Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

H Kakizaki
Department of Urology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

www.jnnp.com
in the human Vim. The proximal or truncal muscles remains obscure. The placement of larger lesions carries continued to surround the advisability of using in a patient with midbrain tumour, corroborating our earlier findings. In their different Vim thalamotomy alleviated tremor in both the distal and proximal segments of the upper extremity. However, controversy continues to surround the advisability of using this method of Vim tremor because the placement of larger lesions carries increased risks and the somatotopy of the proximal or truncal muscles remains obscure in his right upper extremity (Part A, score 5) is 0. His palatal sign were noted on the right side. There were mild hemiparesis with increased stretch reflexes and Babinski with increased stretch reflexes and Babinski. He was admitted to a hospital where radiological examinations showed a left upper brainstem haemorrhage (fig 1A). His neurological state gradually improved. However, in October 2001 a coarse, slowly progressive tremor arose in his right upper extremity. It was severely disabling and he could not use his right arm. He was admitted to our hospital in December 2001. On admission, he was alert and oriented. His speech was mildly dysarthric and slurred. There was palatal tremor. Mild hemiparesis with increased stretch reflexes and Babinski sign were noted on the right side. There were mild deficits of position, vibratory sense, and superficial sensation of light touch and pain in his right upper and lower extremities. Dysesthesia was more pronounced on the right. Because of severe truncal and gait ataxia, he could not remain upright without support; he was unable to walk even with assistance. There was coarse and severe tremor in the right upper extremity. It persisted at rest and its amplitude increased during maintenance of a fixed posture and intentional voluntary movements. It rendered his right arm useless and prevented him from feeding and caring for himself. He was exhausted because of the severe tremor that persisted throughout his waking hours. Surface electromyograms showed rhythmic grouping discharges of 3.6 Hz in the right forearm muscles. His preoperative score on the Tremor Rating Scale (TRS) for his right upper extremity (Part A, score 5) was 11. Magnetic resonance imaging (MRI) study (December 2001) showed a haemosiderin ring around the lesion in the left pontine tegmentum (fig 1B). On T2-weighted images, a high signal lesion was seen in the left inferior olive, as consistent with the hypertrophic olivary degeneration (fig 1C). As sequential pharmacotherapy using clonazepam (3 x 0.5 mg/day) and benserazide/levodopa (3 x 25/100 mg per day) was only slightly effective, he was referred for surgery. Prior informed consent was obtained from the patient and his family. In January 2002, a quadripolar DBS electrode (Model 3387; Medtronic Inc., Minneapolis, MN, USA) was implanted in the left thalamic Vim nucleus with the aid of MRI, third ventriculography, and microelectrode guidance, as previously described. The optimal target was determined to be 7 mm posterior and 14.5 mm lateral to the midpoint of the AC–PC line. The ventricle was entered precisely on the target point (fig 1D, E). As stimulation tests, performed for 5 days, confirmed the beneficial effects of DBS, a programmable pulse generator (Solitaire, Model 7426; Medtronic Inc.) was implanted. His postoperative course was uneventful. After extensive trials, stimulation was carried out using contacts 0 and 1 (fig 1D, E). The optimal stimulation parameters were determined to be 160 Hz frequency, 90 µsec pulse width, and 2.9 V and 3.4 V amplitude at the first and final session. Stimulation with amplitude exceeding 3.4 V induced unpleasant electrical paraesthesia on the right side of his face and right upper extremity. Under optimal stimulation, the tremor was markedly alleviated in the distal part of his right arm: the TRS score for his upper extremity tremor (Part A, score 5) was reduced to 6. Upon discontinuation of stimulation, the distal tremor reappeared immediately and returned to the preoperative state. The proximal tremor of his right arm was unresolved. After discharge, he visited our outpatient department once a month. In January 2003, he complained of gradual worsening of the remaining proximal tremor; the distal tremor remained completely suppressed by thalamic Vim stimulation. We discussed GPi pallidotomy and obtained informed consent prior to the procedure. In April 2003, left GPi pallidotomy was performed according to the method we described previously. The optimal target for the posteroventral part of the GPi was determined to be 2 mm anterior and 20 mm lateral to the midpoint of the AC–PC line, and 1 mm dorsal to the floor of the third ventricle. After creating a test lesion (42 °C, 60 sec), a permanent anatomical lesion was made by heating the electrode tip to 72 °C for up to 70 sec. The electrode was moved in 2 mm increments in the medial, lateral, and dorsal directions, and the lesioning process was repeated to increase the overall size of the lesion (fig 1F). GPi pallidotomy completely abolished his proximal tremor. However, it produced only a small effect on his distal tremor and discontinuation of Vim stimulation resulted in its reappearance at almost the preoperative level. Without stimulation, the TRS score for his upper extremity tremor (Part A, score 5) was 5. The combination of Vim stimulation and GPi pallidotomy had synergistic effects in abolishing Holmes’ tremor in our patient. The therapeutic benefits remain unchanged at the time of writing and the TRS score for his upper extremity tremor (Part A, score 5) is 0. His palatal tremor did not respond to Vim stimulation and pallidotomy and remains unresolved.
Stereotactic Vim surgery, either thalamotomy or thalamic stimulation, is a mainstay in the treatment of parkinsonian or essential tremors. Its efficacy in tremor suppression is superior to that of pallidotomy in parkinsonian patients. However, as evidenced by our case, it does not always produce satisfactory results in patients with Holmes’ tremors, particularly with respect to their proximal tremors. The basal ganglia outflow pathway from the GPI exerts a direct influence on not only the thalamus but also the brainstem motor centres such as the pedunculopontine nucleus related to the mesencephalic tegmental field that controls the axial and proximal appendicular musculature via the descending reticulospinal tract. Therefore, unlike thalamic surgery, which interrupts the thalamo-cortical output that controls distal appendicular musculature via descending corticospinal and corticobulbar tracts, GPI pallidal surgery influences the control of otherwise inaccessible axial and proximal muscles. This may be the reason why GPI pallidotomy produced a marked alleviation of the proximal tremor in our patient. Due to the limited efficacy of thalamic Vim surgery on proximal tremors, the use of other or additional surgeries with greater effects—for example, pallidal surgery or subthalamic area stimulation—should be considered for the treatment of Holmes’ tremor.

S Goto, K Yamada
Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

Correspondence to: S Goto, MD, PhD, Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; sgoto@kaiju.medic.kumamoto-u.ac.jp
doi: 10.1136/jnnp.2003.023077

No association of the mitochondrial DNA A12308G polymorphism with increased risk of stroke in patients with the A3243G mutation

There is a striking phenotypic variability among patients with the A3243G (rRNA_{Leu^{CU}}) mutation of mitochon- drial DNA (mtDNA), the most common heteroplasmic mtDNA mutation. It is responsible for ~80% of cases of MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes), and is also associated with other several phenotypes including maternally inherited diabetes and deafness (MIDD) and chronic progressive external ophthalmoplegia (CPEO). Only 50% of patients carrying the A3243G mutation have stroke-like episodes and the reason for this clinical variability remains poorly understood. Although the percentage level of the A3243G mutation in clinically relevant tissues appears to be important, this relationship is far from clear. High percentage levels of the A3243G mutation in muscle are associated with stroke-like episodes, but approximately one in five patients harbouring >80% A3243G in muscle remain stroke free, suggesting that additional environmental and genetic factors may influence the phenotypic expression of this mutation.

One possibility is that the background mtDNA sequence variation influences phenotype. There is a well-recognised association between the mtDNA genetic background (or haplogroup) and the risk of developing visual failure in another mtDNA disorder, Leber’s hereditary optic neuropathy, and a similar mechanism may influence the incidence of stroke-like episodes in patients harbouring the A3243G mutation. Intrafamilial clustering of clinical phenotypes in A3243G patients would indirectly support a role for the mtDNA background, though our own clinical experience suggests that there is significant clinical variability between families.

Pulkes et al. have previously reported an increased risk of stroke associated with the presence of a homoplasmic, polymorphic (A12308G) variant in 48 patients with the A3243G mutation. The A12308G polymorphism, which is also seen in the second mitochondrial tRNA gene encoding leucine (tRNA_{Leu^{CU}}), occurs with a frequency of 21% in a population of European origin and defines the mtDNA super-haplogroup U/K together with two other polymorphisms (A11467G and G12372A). As haplogroup U has also been reported to be a risk factor for sporadic ocular stroke in patients with migraine, these observations could have profound implications for our understanding of mitochondrial genotype and its relationship to the clinical phenotype. Here we report on the investigation of the A12308G polymorphism in a larger group of well-characterised, unrelated A3243G index cases.

Methods

We carried out a large, multicentre study to investigate the A12308G polymorphism in a group of 107 unrelated family index cases harbouing the A3243G mutation. The patients (>95% Caucasian) were from England, Germany, USA, Australia, and Finland. In the Psychology genetics clinic, where stroke-like episodes were diagnosed clinically by experienced neurologists based upon a characteristic clinical history and brain imaging with computed tomography (CT) or magnetic resonance imaging (MRI); in all cases, a molecular diagnosis of the A3243G mutation was made at a centre with expertise in the investigation of patients with mtDNA disorders.

To investigate the A12308G and G12372A polymorphisms, a 249 bp fragment spanning this mtDNA region was polymerase chain reaction (PCR)-amplified using a forward primer (5’ CCTTGGTGAACTGCACACAGAGGCTT 3’), nt 12164–12189) and a reverse primer (5’ CTTAGGAAGGCTGAGATTG 3’, nt 12412–12390). Amplified products were purified and sequenced using BigDye terminator cycle sequencing chemistries on an ABI 377 automated DNA sequencer (Applied Biosystems, Warrington, UK).

Results

The A12308G polymorphism was present in 32 of the 107 patients, while 56 had a history of stroke-like episodes. Nine of the 56 patients with a history of a stroke and 23 of 51 patients without a stroke without stroke harboured the A12308G polymorphism. Every patient with the A12308G polymorphism also harboured the G12372A variant, indicating that they belong to the same mtDNA super-haplogroup U/K.

As shown in fig 1, our study alone revealed an apparent negative association between stroke-like episodes and the A12308G polymorphism, an observation in direct contrast to the positive association found by Pulkes et al. Meta-analysis of all available data however, including the present study (n = 107) and the published study of Pulkes et al. (n = 48), revealed that 16 of the 77 patients with a history of a stroke and 25 of 78 patients without stroke harboured the A12308G polymorphism. This did not show a statistically significant association between the A12308G polymorphism and stroke-like episodes (χ² = 2.53, p = 0.112).

Discussion

The aim of our study was to examine whether a previously described association between the A12308G polymorphism and an increased risk of stroke in patients with the A3243G mutation was reflected in a larger study group. In agreement with previous reports, 52% of our patients experienced stroke-like episodes and 30% harboured the A12308G polymorphism, confirming that our cohort of

Figure 1 Meta-analysis showing odds ratios (OR) and 95% confidence intervals (CI) for the original study by Pulkes et al. The data generated by this study, and the combined dataset including both studies. The squares represent the OR, with the size proportional to the study size. The horizontal lines on the CI are for the OR. The diamond shows the OR for the combined dataset with CI that overlap 1, indicating a non-significant result.
107 A3243G index cases formed a representative sample. Despite studying a larger cohort of patients, we were not able to confirm the positive association between the A12308G polymorphism and an increased risk of stroke in patients with the A3243G mutation as reported previously. Meta-analysis of all the available data failed to prove any clear association between the A12308G polymorphism and stroke-like episodes.

The clinical diversity associated with the A3243G mutation clearly involves multiple factors. We have previously shown a correlation between clinical phenotype and mutation load in muscle. Age may well be a contributing factor, although there was a tendency for patients with stroke-like episodes in our group to be younger than those without. This argues against age as a risk factor for stroke-like episodes, as seen in common stroke.

Importantly, our findings serve to highlight the difficulty of performing association studies on small numbers of patients. This is particularly difficult for mitochondrial genetic association studies because of the high variability of the mitochondrial genome. Understanding the phenotypic differences between patients with specific, pathogenic mtDNA mutations will ultimately involve studies of large cohorts of patients, unless we are able to gain clues from experimental studies that may highlight factors involved in the altered expression or segregation of mtDNA mutations.

Acknowledgements
The authors thank Geoff Taylor (University of Newcastle upon Tyne) for help with the sequencing. This study was supported by a fellowship from the European Neurological Society (MD), the Newcastle upon Tyne Hospitals NHS Trust (DMT and RWT) and the Wellcome Trust (PFC, DMT and RWT). DRT is supported by the Muscular Dystrophy Association and the Australian NHMRC.

M Deschauer, P F Chinnery, A M Schaefer, D M Turnbull, R W Taylor
School of Neurology, Neurobiology and Psychiatry, The Medical School, University of Newcastle upon Tyne, UK

M Deschauer, S Zierz
Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany

S Shanske, S DiMauro
Department of Neurology, Columbia University College of Physicians and Surgeons, New York, USA

K Majamaa
Department of Neurology, University of Oulu, Finland

E Wilichowsk
Department of Paediatrics and Neuropaediatrics, Georg-August University Göttingen, Germany

D R Thorburn
Murdoch Childrens Research Institute, Royal Children’s Hospital, Melbourne, Australia

Correspondence to: Dr R W Taylor, School of Neurology, Neurobiology and Psychiatry, the Medical School, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK; r.w.taylor@ncl.ac.uk; doi: 10.1136/jnnp.2003.026278

Table 1: Symptoms at diagnosis of malignant cerebral glioma recorded in hospital records versus those elicited at home interviews

<table>
<thead>
<tr>
<th>Symptom or problem</th>
<th>Recorded in the hospital records (n = 92)</th>
<th>Elicited from patients and relatives at home interviews (n = 92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>55 (60)</td>
<td>51 (55)</td>
</tr>
<tr>
<td>Headache</td>
<td>49 (53)</td>
<td>48 (52)</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>35 (38)</td>
<td>44 (48)</td>
</tr>
<tr>
<td>Sensory loss</td>
<td>32 (35)</td>
<td>37 (40)</td>
</tr>
<tr>
<td>Cognitive loss</td>
<td>30 (33)</td>
<td>42 (46)</td>
</tr>
<tr>
<td>Dysphasia</td>
<td>29 (32)</td>
<td>23 (25)</td>
</tr>
<tr>
<td>Personality change</td>
<td>14 (15)</td>
<td>28 (30)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>13 (14)</td>
<td>44 (48)</td>
</tr>
</tbody>
</table>

Values are n (%).

References

Early symptoms of brain tumours
Malignant cerebral glioma is the most common adult primary brain tumour but surprisingly few studies report how patients with early symptoms present in primary or secondary care. A retrospective audit in south east Scotland found considerable variation in the referral of patients with primary brain tumours: only one quarter of 439 patients was initially referred directly to specialist centres. This must relate in part to the way in which symptoms develop and the difficulty of distinguishing them from more common but less sinister problems. For example, a large case record review of initial symptoms experienced by 635 glioma patients presenting to the National Hospital for Neurology and Neurosurgery, Queen Square, London, between 1955 and 1975 found a relatively low prevalence of neurological problems such as epilepsy (38%), headache (35%), mental change (17%), and hemiparesis (10%); by the time of diagnosis the prevalences were 54%, 71%, 52%, and 43%, respectively. Few studies focus on the accounts of patients and relatives. One qualitative interview study of 28 Swedish patients suggested that relatives noticed general changes including cognitive and personality change and took the initiative in seeking help more often than the patients themselves.

The recently published last diaries of the politician and historian the late Alan Clark provoked us to reconsider the significance of early symptoms from the perspective of patients and their close relatives. Clark provides us with a moving account of the gradual onset of symptoms from a glioma, problems with thinking and concentration, and intermittent headache over nine months. He also describes vividly the anxiety of knowing something was wrong but without any explanation, before his tumour was diagnosed.

During a study of quality of life already described, we had opportunity to visit glioma patients at home after diagnosis, to listen to their own accounts, and to question relatives separately. Here we report data on 92 patients (table 1), suggesting a differing development of symptoms and problems from that described in their medical records, and a distinctly similar picture, in some, to that described by Alan Clark. Interviews tended to elicit histories of more subtle problems such as fatigue and cognitive and personality change almost as often as the neurological problems typically associated with brain tumours. Of the 48 patients with headache only two had developed no other symptoms by the time of diagnosis.

Table 1: Symptoms at diagnosis of malignant cerebral glioma recorded in hospital records versus those elicited at home interviews

<table>
<thead>
<tr>
<th>Symptom or problem</th>
<th>Recorded in the hospital records (n = 92)</th>
<th>Elicited from patients and relatives at home interviews (n = 92)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>55 (60)</td>
<td>51 (55)</td>
</tr>
<tr>
<td>Headache</td>
<td>49 (53)</td>
<td>48 (52)</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>35 (38)</td>
<td>44 (48)</td>
</tr>
<tr>
<td>Sensory loss</td>
<td>32 (35)</td>
<td>37 (40)</td>
</tr>
<tr>
<td>Cognitive loss</td>
<td>30 (33)</td>
<td>42 (46)</td>
</tr>
<tr>
<td>Dysphasia</td>
<td>29 (32)</td>
<td>23 (25)</td>
</tr>
<tr>
<td>Personality change</td>
<td>14 (15)</td>
<td>28 (30)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>13 (14)</td>
<td>44 (48)</td>
</tr>
</tbody>
</table>

Values are n (%).

References
experience might help further define the subacute presentation of cognitive and personality change and their relation to other complaints. Second, the predictive power of neurological symptoms present in general practitioners could be explored using existing large primary care research datasets. Third, relatives of patients referred urgently should be asked to attend with them to clarify aspects of the history that the patient may be unaware of. Beginning to discuss openly the difficulty of earlier diagnosis may help families come to terms with this lasting aspect of their concern. This might also help repair unnecessary rifts in relations with general practitioners, who are best placed to provide local support and palliative care these patients so often need.

Acknowledgements
We thank Sue Hall and Maureen O’Connor for help collecting the data and patients and relatives for agreeing to be interviewed. Data collection was supported by the Cancer Research Campaign, grant number CP 1017, and writing up by the BMA TP Granton Research Award for Health Education in Cancer. The views expressed do not represent those of either organisation.

E Davies
Department of Palliative Care and Policy, Guy’s, King’s and St Thomas’ School of Medicine, Weston Education Centre, Cottenham Road, Denmark Hill, London SE5 9PJ, UK

C Clarke
National Hospital for Neurology and Neurosurgery, University College Hospitals, Queen Square, WC1N 3BG, UK

Correspondence to: Dr Elizabeth Davies; elizabethdavies@docctors.org.uk
doi: 10.1136/jnnp.2003.033308

Competing interests: none declared

References

Five year follow up of a patient with spinal and bulbar muscular atrophy treated with leuprorelin

Spinal and bulbar muscular atrophy (SBMA; MIM 313280) is an X linked late onset motor neuron disease characterised by slowly progressive proximal and bulbar muscle weakness, muscle atrophy, postural hand tremor, gynecomastia, and endocrine disturbances that include signs of partial androgen resistance. SBMA is caused by the expansion of a trinucleotide CAG repeat in the first exon of the androgen receptor (AR) gene encoding a polyglutamine stretch.1

Recently, Katsuno et al2 reported that leuprorelin, a luteinising hormone releasing hormone (LHRH) agonist that reduces the level of testosterone release from the testis, rescued motor dysfunction and nuclear accumulation of mutant ARs in a male transgenic mouse model of SBMA. This result indicates that ligand dependent nuclear translocation of mutant ARs containing expanded polyglutamine is the main source of the pathogenesis of SBMA, and that leuprorelin suppresses this translocation. We read this report with great interest, because we followed up a patient with SBMA who has been administered leuprorelin for 5 years to treat his coexisting prostate cancer.

Case report
A 75 year old male noticed bilateral finger tremor at age 57. At age 63, he noticed weakness in his arms. He was admitted to our hospital in January 1991, when he was 64 years old. On initial examination, he had bilateral gynecomastia. Neurological examinations revealed facial weakness and lingual atrophy with fasciculations. Mild muscular atrophy was observed in the proximal parts of the upper extremities. Muscle strength was approximately in the range of 3/5 to 4/5 in the proximal parts, and 5/5 in the distal parts of the upper extremities. Fasciculations were observed in the lower extremities. Deep tendon reflexes were either lost or markedly diminished. Babinski signs were absent. Laboratory examinations revealed that the serum creatine kinase (CK) level increased to 803 IU/l (normal range 43–239 IU/l), LH (5.9 IU/l; normal range 1.8–5.2 IU/l) and follicle stimulating hormone (20.5 IU/l; normal range 2.9–8.2 IU/l) levels were elevated. After his informed consent was obtained, high molecular weight genomic DNA was extracted from peripheral leucocytes of the patient according to standard protocols. Genetic analysis of the AR gene was performed and the expansion of a CAG repeat (45 repeats) in exon 1 of the AR gene was identified, leading to a diagnosis of SBMA.

At age 67, he developed weakness in the legs, and noticed difficulty in climbing up stairs or standing up from a chair. Serum CK levels gradually decreased to 1717 IU/l at age 70. In January 1998, when he was 71 years old, he was diagnosed as having prostate cancer, and was intramuscularly injected with 3.75 mg of leuprorelin every 28 days, because leuprorelin inhibits production of testosterone and dihydrotestosterone (DHT), which enhances the growth of prostate cancer cells. One month after the start of treatment, he noticed that his gait disturbance was rapidly exacerbated; however, the gait disturbance returned to the level before the start of treatment by April 1998. After the episode of transient exacerbation, his muscle weakness and atrophy exhibited no apparent deterioration, long term stabilisation of the motor function was obtained. Finally, leuprorelin treatment was effective even when the treatment was started in the advanced stage of the disease, although the patient’s muscle weakness and atrophy have not completely disappeared. These findings provide grounds for the proposal made by Katsuno et al2 that leuprorelin is a promising candidate for the treatment of SBMA.

Discussion
The experience of a 5 year follow up of this patient treated with leuprorelin is highly indicative of the following. Firstly, leuprorelin treatment induced a transient deterioration of the motor function in humans, as demonstrated in a transgenic mouse model of SBMA.2 Secondly, after the initial transient deterioration, long term stabilisation of the motor function was obtained. Finally, leuprorelin treatment was effective even when the treatment was started in the advanced stage of the disease, although the patient’s muscle weakness and atrophy have not completely disappeared. These findings provide grounds for the proposal made by Katsuno et al2 that leuprorelin is a promising candidate for the treatment of SBMA.

At least nine neurodegenerative diseases are known to be caused by expanded CAG repeats. SBMA is unique among these diseases because the disease protein, AR, has a specific ligand, testosterone. It has been demonstrated that the nuclear translocation of ARs is solely dependent on testosterone. Recently, a transgenic mouse model carrying full length AR containing 97 glutamine repeats has been generated, and this model showed progressive muscular atrophy and weakness.4 These phenotypes were markedly increased in male transgenic mice which were significantly rescued by castration. Female transgenic mice exhibited only a few manifestations that markedly deteriorated with testosterone administration. Furthermore, in the Drosophila model of SBMA, it has been demonstrated that androgen agonists induce nuclear translocation of the mutant ARs and toxicity.5 Taken together, this raises the possibility that blockade of nuclear translocation of the mutant ARs by hormonal intervention can provide therapeutic benefits in SBMA.

LHRH agonists including leuprorelin have been used for the treatment of prostate cancer. These drugs eventually inhibit LH production, which in turn inhibits production of testosterone and DHT, on which growth of prostate cancer cells depend. The alleviation or improvement of muscular weakness and decrease in the serum CK level in our patient may be due to the anti-androgenic effects of leuprorelin. Interestingly, he noticed rapid exacerbation of gait disturbance one month after the administration of leuprorelin. It has been demonstrated that when LHRH agonists are administered continuously, the pituitary gland is initially stimulated, but after 5–12 days, the pituitary gland becomes

![Figure 1](http://jnnp.bmj.com/)
desensitised and stops releasing LH.7 When that occurs, the testes stop releasing testosterone. During the period of the initial stimulation, more LH is released, consequently there is a surge in the secretion of testosterone and DHT from the testes (so subsequently there is a surge in the secretion of LH). In response to this stimulation, more LH is released, consequently there is a surge in the secretion of testosterone and DHT from the testes.

In conclusion, we report the beneficial effect of leuprorelin on SBMA. Our current experience warrants further investigations to determine whether leuprorelin may be of benefit for the treatment of SBMA in humans.

T Shimohata, T Kimura, M Nishizawa
Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan

O Onodera
Department of Molecular Neuroscience, Resource Branch for Brain Disease Research, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, Niigata, Japan

S Tsuji
Department of Neurology, University of Tokyo, Tokyo, Japan

Correspondence to: T Shimohata, Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan; t-shimo@bri.niigata-u.ac.jp
doi: 10.1136/jnnp.2003.030064

Received 9 October 2003
In revised form 9 December 2003
Accepted 14 December 2003

Competing interests: none

References

Cessation of migraine following central retinal vein occlusion

Cases of retinal vein occlusion with migraine have been described since 1882.8 An interesting case of central retinal vein occlusion (CRVO) which coincided with complete cessation of longstanding, severe migraines is reported.

Case report
A 44-year-old lady developed classic migraine at the age of 11 years. Her symptoms comprised a visual aura of flashing lights followed by severe headache (not localised to one side), photophobia, and nausea, which generally lasted for two days. There were no identifiable triggers. Her last episode consisted of sumatriptan, which she took on experiencing the visual aura. This considerably reduced the severity of her headache and usually limited the duration of her symptoms to one day. The migraines occurred frequently and randomly with the longest migraine-free period being one month.

One morning, she awoke with visual loss in her right eye. She assumed this to be the visual aura of a migraine (although it was atypical since there was no photopsia or subsequent headache), and took her normal dose of sumatriptan. The visual loss occurred before taking the medication. The visual defect fragmented into black patches followed by gradual visual improvement over the next few days. She then consulted her general practitioner who referred her to the eye department.

At presentation to the eye department one week after the initial visual loss, her visual acuity was 6/9 right and 6/4 left. There was a right relative afferent pupillary defect. Fundoscopy revealed retinal haemorrhages in all four quadrants with a swollen optic disc. A diagnosis of non-ischaemic CRVO was made. She was advised to take aspirin 75 mg daily.

On follow up, her visual acuity continued to improve with resolution of the retinal haemorrhages and the disc oedema. The following investigations were normal: full blood count, erythrocyte sedimentation rate, electrolytes, fasting glucose, fasting cholesterol, and plasma protein electrophoresis. General medical examination was normal. She is a non-smoker with no family history of cardiovascular disease. At the 18 month follow up her visual acuity was 6/5 right and 6/4 left. There was no relative afferent pupillary defect. The fundal appearance returned to normal.

Follow up to date is two years and she has not experienced a single migraine since developing the CRVO. There have been no other factors to account for the cessation of her migraines during this period.

Discussion
There have been numerous reports of retinal vaso-occlusion and migraine in the context of “complicated migraine”.9 We have presented an interesting patient who instead experienced complete cessation of migraine in association with the development of a CRVO. In the natural history of migraine there is a gradual reduction in severity and frequency of attacks with age.4 The abrupt cessation of migraine following development of a CRVO suggests a causal relationship. She had no risk factors for a retinal vascular event.

It has been proposed that prophylactic use of platelet antagonists, such as aspirin, may reduce the occurrence of migraine. Serotonin is released locally in cerebral tissue shortly before the onset of a migraine attack. Since platelets contain all of the plasma serotonin platelet function has been implicated as a factor in migraine.1 The role of serotonin in migraine is complex. To the best of our knowledge there is no report of platelet antagonists causing complete cessation of migraine. It seems unlikely that aspirin was solely responsible for the cessation of migraine in our patient, however this remains a possibility.

The pathophysiology of migraine is complex but involves neuronal events linked to alterations in the calibre of intracerebral blood vessels. During a migraine aura cerebral blood flow decreases. The subsequent hyperaemia leads to headache by activation of fibres originating in the trigeminal ganglion. These trigeminovascular afferents reside primarily within the ophthalmic division of the trigeminal nerve.2 The retinal vasculature is very similar to the cerebral vasculature both in structure and response to vasoactive substances.3 This probably accounts for cases of “complicated migraine” leading to retinal vein occlusion.

We postulate that an initial neuronal event occurred in our patient that resulted in a functional alteration in her trigeminovascular system leading to the complete cessation of migraine. This neuronal event also produced a temporary decrease in central retinal artery perfusion and the subsequent development of a CRVO.3 This case therefore demonstrates the potential for intracerebral events to influence the retinal vasculature.

S P Meredith, D K Newman
Department of Ophthalmology, Addenbrooke’s Hospital, Cambridge, UK

Correspondence to: S P Meredith, spmeredith@doctors.org.uk
doi: 10.1136/jnnp.2003.024869

Competing interests: none declared

References
A case of acute urinary retention caused by periaqueductal grey lesion

H Yaguchi, H Soma, Y Miyazaki, J Tashiro, I Yabe, S Kikuchi, H Sasaki, H Kakizaki, F Moriwaka and K Tashiro

J Neurol Neurosurg Psychiatry 2004 75: 1202-1203
doi: 10.1136/jnnp.2003.027516

Updated information and services can be found at:
http://jnnp.bmj.com/content/75/8/1202

These include:

References
This article cites 3 articles, 3 of which you can access for free at:
http://jnnp.bmj.com/content/75/8/1202#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes