Spontaneous nystagmus in dorsolateral medullary infarction indicates vestibular semicircular canal imbalance

H Rambold, C Helmchen

METHODS

Patient #1

A 66 year old man presented with left dorsolateral medullary syndrome. On admission he had left Horner’s syndrome, sensory loss of pain and temperature on the left side of his face, right trunk, and limbs, and hemiataxia of the left side. He also showed a falling tendency to the left. Oculomotor examination demonstrated conjugate nystagmus in gaze straight ahead with a clockwise (rightward) torsional (contralaterally beating fast phases; from the subject’s point of view) and a rightward horizontal component. The torsional component was more pronounced in the right eye; it increased in amplitude but decreased in frequency in the dark. There was a small vertical component in the upward direction. The patient had leftward lateropulsion of saccades (hypermetria), saccadic smooth pursuit to the right, skew deviation with hypotropia of the left eye, and a head tilt to the left. Magnetic resonance imaging (MRI) revealed a left dorsolateral medullary infarction (fig 1). Eye movement recordings were performed 1 day after symptom onset.

Patient #2

A 64 year old woman presented with left dorsolateral medullary syndrome. Left Horner’s syndrome, sensory loss of pain and temperature on the left side of the face and her right trunk and limbs, and hemiataxia of her left side were present. She also showed a falling tendency to the left. Oculomotor examination detected nystagmus with clockwise (contralaterally beating, rightward) torsional, rightward horizontal, and upward vertical fast phase components that increased in amplitude in the dark. The torsional nystagmus had a larger torsional component in the right eye. The patient had leftward lateropulsion of saccades (hypermetria), saccadic smooth pursuit eye movements to the right, skew deviation with hypotropia of the left eye, and a head tilt to the left. MRI revealed a left dorsolateral medullary infarction (fig 1). Eye movement recordings were performed 1 day after symptom onset.

Abbreviations: MRI, magnetic resonance imaging; OTR, ocular tilt reaction; VN, vestibular nuclei
stereotaxic atlases of Schaltenbrand and Wahren. The location of the vestibular nuclei (VN) is marked as a black area. The lesion is a dorsal medullary infarction that involves the ipsilesional VN in all four patients. Important landmarks are indicated in the anatomical reconstruction of patient ST, nucleus of the solitary tract; X, dorsal motor vagal nucleus; XII, hypoglossal nucleus.

Reconstruction of the lesions was performed using axial 3 mm slices of the brainstem were acquired (1.5 Tesla Siemens Magnetom Symphony, Germany). The T2 weighted axial magnetic resonance images of the medulla oblongata for patients #1 to #4 are shown in the first row. The extent of the lesion (white areas) is projected onto the appropriate anatomical slices (CVII, Tc-30) of the stereotaxic atlas of Schaltenbrand and Wahren. Individual axial slices were normalised and superimposed on the appropriate level of the anatomy atlas.

Patient #3
A 73 year old hypertensive man presented with right lateral medullary syndrome. He had mild dysarthria and dysphagia, sensory loss of pain and temperature on the right side of his face, left trunk, and limbs, and hemiataxia of the right side. There was lateropulsion to the right. Oculomotor examination revealed nystagmus with a counterclockwise (contralesionally beating, leftward) torsional and a leftward horizontal component (fast phases) that increased in the dark. There was an upward vertical nystagmus component in both eyes. The nystagmus was conjugate and the amplitudes equal in both eyes. The patient had rightward lateropulsion of saccades (hypermetria), saccadic smooth pursuit eye movements in both directions, skew deviation with hypotropia of the right eye, and a head tilt to the right. MRI revealed a right dorsolateral medullary infarction (fig 1). Eye movement recordings were performed on the third day after symptom onset.

Patient #4
A 63 year old man presented 2 days after onset of acute unsteadiness and vertigo with right dorsolateral medullary syndrome. He had right Horner’s syndrome, sensory loss of pain and temperature on the left trunk and limbs, and hemiataxia of the right side. He also had a falling tendency to the right. Oculomotor examination demonstrated conjugate nystagmus with a counterclockwise (contralesionally beating, leftward) torsional, a rightward horizontal, and upward fast phase components in the light, which was more pronounced in the dark. The nystagmus was conjugate. There was also horizontal gaze evoked nystagmus in both horizontal directions. Saccades to the right were hypermetric. Skew deviation with hypotropia of the right eye was found. MRI revealed a right incomplete dorsolateral medullary infarction, with two parts, that is, a more dorsal and a more lateral portion (fig 1). Eye movement recordings were performed 5 days after symptom onset.

MRI
T1, T2, diffusion, and FLAIR weighted MRI including high resolution axial 3 mm slices of the brainstem were acquired (1.5 Tesla Siemens Magnetom Symphony, Germany). Reconstruction of the lesions was performed using axial and sagittal slices as described on the basis of the stereotaxic atlases of Schaltenbrand and Wahren and Olszewski and Baxter. Individual axial slices were normalised and superimposed on the appropriate level of the anatomy atlas.

Tonic ocular torsion
Fundus photography was performed during mydriasis for each eye separately to measure tonic ocular torsion. Roll deviation of the fovea-macula intersection was measured in 10 age matched controls. More than 9° or less than 1.4° excyclorotation with respect to the horizontal meridian was considered as pathological.

Search coil recording
After the patients had given their informed consent, binocular, 3-D search coil recordings (Remmel, Ashland, MA, USA, frame size 180 cm cube; combination annulus, Skalar, Delft, the Netherlands) were performed. The head was stabilised comfortably in an upright position by a firm head rest and chin support. In vitro calibration of the coils and fixation at gaze straight ahead (laser target 145 cm distance from the eyes) was used to calibrate each individual eye. The coil signals were digitised (16 bit AD, NI PCI 6071E, 600 Hz) and filtered by an impulse response filter at 100 Hz (3 dB level). Eye position was calculated in quaternions with eye velocity measured as angular not as derivative velocity. Clockwise (rightward) torsion (movement direction from the upper pole of the eye), downward, and leftward movements from the subject’s view were defined as positive. The difference in vertical eye position between right and left eyes in gaze straight ahead while fixating with one eye was used to quantify the amount of skew deviation. Nystagmus was analysed in the light while the subject fixated at gaze straight ahead and in the dark.

To analyse the effect of the neural integrator on the nystagmus a single exponential function was fitted to the horizontal (z), vertical (y), and torsional (x) eye positions of the slow phases using a least square minimisation procedure (E(t) = Off+Ep·e(-t/Tc); E, eye position; Off, positional offset; Ep, post saccadic eye position; Tc, time constant; t, time). Each fit with a linear correlation coefficient over 0.95 was controlled manually and only those which aligned well with the position data were accepted. Negative Tc show an exponential decrease, positive Tc an increase of the slow phase of nystagmus.
To analyse the vestibular contribution to the nystagmus, the median 3-D velocity of each slow phase in the light and dark was calculated. All slow phases with additional blinks were excluded. The analysis was performed with the fixing eye provided that the horizontal and vertical eye positions deviated less than 5° from gaze straight ahead. The median slow phase velocity of each direction component was normalised by dividing the eye velocity components (z, horizontal; x, torsional; y, vertical) by $\sqrt{(x^2+y^2+z^2)}$. The axes were compared to the axes of the semicircular canal stimulation using anatomical data. Based on Ewald's first law (stimulation of a particular semicircular canal evokes eye movements in the plane of this semicircular canal, but in the opposite direction), we calculated the expected eye movement axis for individual semicircular canal stimulation. The deviation angle in 3-D of the slow phase eye rotation axis from the canal axes was calculated.

RESULTS

Three dimensional, binocular eye movements were examined in four patients who had acute dorsolateral medullary infarction and spontaneous jerk nystagmus. All patients had a lesion of the dorsolateral medulla which had been assessed on MRI (3–8 days after symptom onset), two on the right and two on the left side (fig 1). There were no other lesions in the brainstem. Using the atlas of Schaltenbrand and Warren, reconstruction of the lesions showed that the vestibular nuclei were involved in all patients (fig 1); however, the lesion only partly involved the vestibular nuclei in two patients (#3 and #4). The medial vestibular nuclei involved in patients #1–4 were identified by using the atlas of Olszewski and Baxter.

The patients showed typical clinical signs of dorsolateral medullary syndrome. Three out of the four patients exhibited tonic ocular torsion in both eyes, which was always ipsilateral to the lesion. One patient (#3) showed tonic ocular torsion only in one eye (table 1). There was always skew deviation of 1° to 6° with hypotropia ipsilateral and/or hypertropia contralateral to the lesion side (table 1).

All patients exhibited nystagmus with torsional, vertical, and horizontal components in gaze straight ahead (fig 2), which were on clinical observation more pronounced under Frenzel’s glasses than in the light. The contralesional eye showed a larger torsional and the ipsilateral eye a larger horizontal component in gaze straight ahead (fig 2), contralateral to the lesion side (table 1). There were no other lesions in the brainstem. Using the atlas of Schaltenbrand and Warren, reconstruction of the lesions showed that the lesions in the brainstem. Using the atlas of Schaltenbrand and Warren, reconstruction of the lesions showed that the vestibular nuclei were involved in all patients (fig 1); however, the lesion only partly involved the vestibular nuclei in two patients (#3 and #4). The medial vestibular nuclei involved in patients #1–4 were identified by using the atlas of Olszewski and Baxter.

The patients showed typical clinical signs of dorsolateral medullary syndrome. Three out of the four patients exhibited tonic ocular torsion in both eyes, which was always ipsilateral to the lesion. One patient (#3) showed tonic ocular torsion only in one eye (table 1). There was always skew deviation of 1° to 6° with hypotropia ipsilateral and/or hypertropia contralateral to the lesion side (table 1).

All patients exhibited nystagmus with torsional, vertical, and horizontal components in gaze straight ahead (fig 2), which were on clinical observation more pronounced under Frenzel’s glasses than in the light. The contralesional eye showed a larger torsional and the ipsilateral eye a larger vertical component in patients #1 and #2. The torsional component of the quick phases always beat to the contralesional side, clockwise (rightward) torsional for left sided lesions (patients #1 and #2) and counterclockwise (leftward) torsional for right sided lesions (patients #3 and #4). The vertical eye movement component was always upward in both eyes, the horizontal component contralesional in three of four subjects, and ipsilesional in one subject. The absolute average (SD) slow phase velocity of nystagmus in all patients in the dark was 7.2 (4.4) °/s (torsional 4.8 (1.8) °/s; vertical 3.4 (3.1) °/s; horizontal 3.4 (3.7) °/s) and 6.2 (4.5) °/s (torsional 5.1 (3.3) °/s; vertical 2.2 (2.1) °/s; horizontal 2.6 (2.6) °/s) in the light (table 1).

Analysis of the exponential slow phases of nystagmus

Most slow phases of the nystagmus were linear, but some, in all patients, also showed an exponential drift. Exponential increasing, decreasing, and even sigmoid shaped slow phases were found (fig 2). Time constants were calculated for selected single slow phases. Only slow phase fits which reached regression coefficients above 0.95 in all eye movement components were further analysed. In patients #1 and

<table>
<thead>
<tr>
<th>Table 1 Static binocular misalignment and nystagmus slow phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
</tr>
<tr>
<td>#1</td>
</tr>
<tr>
<td>Eye</td>
</tr>
<tr>
<td>Fundus (°)</td>
</tr>
<tr>
<td>Skew deviation</td>
</tr>
<tr>
<td>Xvel (°/s)</td>
</tr>
<tr>
<td>Yvel (°/s)</td>
</tr>
<tr>
<td>Zvel (°/s)</td>
</tr>
</tbody>
</table>
| All values are given for each eye (LE, left eye; RE, right eye) and patient (#1–4) separately. In the first row the tonic roll deviations of the eyes (fundus) are plotted. Pathological values of tonic roll deviation are marked by asterisks. The amount of skew deviation is shown and the fixating eye is indicated by “Fix.” In the next rows the median slow phase velocity of the nystagmus in the dark and in the light is shown. Slow phase velocities: Xvel, torsional eye velocity; Yvel, vertical eye velocity; Zvel, horizontal eye velocity; Ccw, counter clockwise (leftward) torsional; Cw, clockwise (rightward) torsional; Fix, fixing eye; positive, clockwise (rightward) torsion, left, downward. Values are mean (SD).
#2 there was more exponential increase in the vertical and torsional direction of the slow phases, in patients #3 and #4 more exponential decrease. However, in all patients some slow phases with either an exponential decrease or an exponential increase were found. Time constants were measured for those slow phases with a large exponential decay. On average the mean (SD) exponential decreasing time constants were: \(-0.6 (0.2)\) s for horizontal, \(-0.7 (0.2)\) s for vertical, and \(-1.2 (0.3)\) s for torsional components; the mean (SD) increasing time constants were: \(0.6 (0.1)\) s for horizontal, \(0.3 (0.1)\) s for vertical, and \(0.4 (0.1)\) s for torsional components. In the majority of slow phases the fit of the single exponential function failed, because they were linear or had a more complex profile with an exponential and a linear component. Because of the linear slow phase, spontaneous nystagmus could not be explained by an unstable or impaired neural integrator alone.

Analysis of the rotation axes of the slow phases

The normalised slow phase velocity mainly reflects the late decay. On average the mean (SD) exponential increasing time constants were: \(0.6 (0.2)\) s for horizontal, \(0.3 (0.1)\) s for vertical, and \(0.4 (0.1)\) s for torsional components. In the majority of slow phases the fit of the single exponential function failed, because they were linear or had a more complex profile with an exponential and a linear component. Because of the linear slow phase, spontaneous nystagmus could not be explained by an unstable or impaired neural integrator alone.

DISCUSSION

This is the first time that the rotation axes of nystagmus have been analysed binocularly in acute dorsolateral medullary
Vestibular nystagmus

As described earlier, we mainly found linear, but also some exponentially decreasing or increasing, slow phases of nystagmus at gaze straight ahead. Exponentially decreasing slow phases are a sign of neural integrator failure: the eye velocity signal is no longer integrated into an appropriate eye position signal. In contrast, exponentially increasing slow phases are a sign of an unstable neural integrator. The neural integrator for the horizontal eye movements is mainly located in the nucleus prepositus hypoglossi and in the vestibular nuclei, and for the vertical and the torsional eye movements in the interstitial nucleus of Cajal and the vestibular nuclei. Lesions of the medial vestibular nuclei and the nucleus prepositus hypoglossi usually cause contralesional nystagmus at gaze straight ahead and could lead to horizontal integrator failure, with time constants of the slow phases as slow as 200 ms. Integrator failure, however, could only partly explain the nystagmus in our patients because a considerable portion of the slow phases were linear. Thus, an additional vestibular origin of the nystagmus is likely.

Stimulation of the semicircular canal afferents always elicits an eye movement in the plane of the canal, but in the opposite direction (Ewald’s first law). The nystagmus slow phase axes in our patients did not align with those of single semicircular canal stimulation. However, combined stimulation of the posterior and the horizontal semicircular canals based on anatomical data closely aligns with the slow phase axes obtained in our patients. There is some evidence that semicircular canals may contribute to spontaneous nystagmus in dorsolateral medullary syndrome. The spontaneous nystagmus might be caused by central imbalance of the semicircular canals, either by a lesion of the ipsilesional horizontal and anterior semicircular canals or by stimulation of the contralesional horizontal and posterior semicircular canals.

The small deviation of the slow phase axes from the canal plane could be caused by (i) tonic ocular torsion and skew deviation, (ii) the contribution of the otoliths (utriculus and sacculus), or (iii) the anterior semicircular canal (AC). The tonic ocular torsion was quite small (table 1). This small tonic ocular torsion cannot account for deviation of the slow phase axes large enough to cause the measured axes pattern.

It is uncertain whether central imbalance of otolith signals causes nystagmus or if the otolith signals only influence an existing imbalance of the semicircular canals. While the nystagmus in our patients is probably not caused by utricular imbalance alone, there might be some utricular or saccular contribution accounting for the residual axes deviation. In the vestibular nuclei there is some convergence of the lesion side and the vertical quick phases had an upward direction. The horizontal component in three of our four patients was contralesional and in one patient (#4) ipsilesional but of very small horizontal slow phase velocity. The nystagmus direction in our patients, that is, contralesional, is in accordance with experimental lesion of the vestibular nuclei.
utricular and the posterior 27 and, to some extent, the horizontal 28 semicircular canal afferents which may contribute to our nystagmus. There might be some additional contribution of the anterior semicircular canal to the axis deviation.

Our data are in accordance with previous reports obtained from 2-D electro-oculography and clinical assessments which proposed that torsional nystagmus in brainstem lesions might be caused by central vertical semicircular imbalance and not by imbalance of the otoliths. 10 This finding is in line with the small contribution of the otoliths to physiological torsional nystagmus. 29 More specifically according to our analysis, the major contribution to the nystagmus slow phase axes in straight ahead gaze may be caused by the combined imbalance of the horizontal and vertical semicircular canals, for example, indicating a lesion of the ipsilesional anterior and horizontal semicircular canals. Whether the nystagmus of our patients is caused by an immediate lesion of the vestibular nuclei and their pathways, or by lesion of the vestibulo-cerebellar projections remains to be determined.

CONCLUSION
We provide evidence that there is central semicircular canal imbalance in addition to otolith imbalance in dorsolateral medullary infarctions. 2 The direction of the spontaneous nystagmus in the first days after infarction is consistent with combined stimulation of the horizontal and posterior semicircular canals on the contralesional side.

ACKNOWLEDGEMENTS
The authors thank Mrs J Benson for carefully reading of the manuscript.

REFERENCES

19 Ewald JR. Physiologische Untersuchungen ueber das Endorgan des Nervus octavus. Wiesbaden: Bergmann, 1892.

ECHO

Training of care givers after stroke reduces costs

Improvements in stroke rehabilitation have increased the number of disabled patients who live at home with the help of untrained care givers. Trying to help care givers by providing information packages, family support workers, or specialist nurses has provided only modest benefits for patients and carers. Now researchers in London, UK have shown that caregiver training is beneficial and reduces service costs.

The care givers of 300 stroke patients on a stroke rehabilitation unit were randomised, before the patient went home, to training in basic nursing, moving, handling, and assistance with activities of daily living and communication (three to five 30–45 minute sessions on the unit and one follow up session at home) or no training. All received conventional advice, information, and involvement. Caregivers who received training had better mental health and quality of life at three and 12 months and the patients’ quality of life also improved.

The economic evaluation included health services, other formal care agencies, and informal carers and cost per patient was calculated from unit costs and resource volumes. Health and social costs over one year at 2001–2002 prices were £10544 (caregiver training) v £14587 (no training), a saving of £4043 (US $7249, €6072). With inclusion of informal care costs the total saving was £4091. Most of the saving was due to shorter initial hospital stay in the caregiver training group rather than cost reductions in care whilst at home. The costs of informal care were similar in the two groups so there was no shifting of costs from statutory services to care givers. No change in caregivers’ quality adjusted life years was detected using the EuroQol five-dimensional questionnaire (EQ-5D).

Providing training for caregivers of stroke patients improves their quality of life, as well as that of the patients, and reduces service costs, largely by expediting discharge from hospital.

Spontaneous nystagmus in dorsolateral medullary infarction indicates vestibular semicircular canal imbalance
H Rambold and C Helmchen

J Neurol Neurosurg Psychiatry 2005 76: 88-94
doi: 10.1136/jnnp.2003.031690

Updated information and services can be found at:
http://jnnp.bmj.com/content/76/1/88

These include:

References
This article cites 25 articles, 4 of which you can access for free at:
http://jnnp.bmj.com/content/76/1/88#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/