Asymmetry of critical closing pressure following head injury

A Kumar, E A Schmidt, M Hiler, P Smielewski, J D Pickard, M Czosnyka

Objective: Critical closing pressure (CCP) is the arterial pressure below which the vessels collapse. Hypothetically it is the sum of intracranial pressure (ICP) and vessel wall tension in the cerebral circulation. This study investigated transhemispherical asymmetry of CCP by studying its correlation with radiological findings on computed tomography (CT) scans in head injury patients.

Method: ICP, arterial blood pressure, and middle cerebral artery blood flow velocity were recorded daily in 119 ventilated patients. Waveforms were processed to calculate CCP. CT scans were analysed according to a system based on the Marshall classification.

Results: Left-right differences in CCP correlated with midline shift on the CT scan (r=0.48; p<0.02). Asymmetry of CCP also corresponded with the side of the head lesion (p=0.007) and the side of the craniotomy where it was performed (p=0.006). Absolute CCP weakly correlated with brain swelling (r=0.23; p=0.03) and arterial pressure (r=0.21; p=0.02) but did not correlate with ICP. Cerebral perfusion pressure calculated as the difference between mean arterial pressure and CCP did not correlate with outcome, but "traditional" cerebral perfusion pressure (mean arterial pressure minus intracranial pressure) did.

Conclusions: Critical closing pressure is disturbed by localised brain lesions. Its asymmetry corresponds to asymmetrical findings on CT scans. CCP seems to describe vascular resistance better than ICP.
CCP = ABPMEAN – (first harmonic of ABP pulse/first harmonic of FV pulse)*FVMEAN

We averaged the measured variables over the total time of monitoring so that every patient was represented by one set of results: left CCP, right CCP, the difference between left and right CCP, ICP, ABP, flow velocities for the left and right sides of the circulation, and cerebral perfusion pressure. Furthermore, CT findings were included in this data set and consisted of the extent of brain swelling, midline shift, and the side of the lesion. We estimated the cerebrovascular resistance as the ratio of cerebral perfusion pressure and mean flow velocity.

CT analysis
We selected the CT scans of the head injured patients that were closest to the date of transcranial Doppler recording for analysis and graded the abnormalities according to a simplified version of the Marshall classification. The extent of brain swelling was determined by evaluating the effacement of ventricles, disappearance of sulci, basal cistern compression, and a reduction in the delineation between grey and white matter. Based on the number of the above-mentioned features displayed in the scan, a score out of four (0 = no swelling, 4 = severe swelling) was assigned to each patient. We recorded the side of the major lesion as well as any midline shift.

Statistical analysis
Data in table 2 are presented as mean (SD). We analysed the correlation between different variables using linear regression and the calculation of Pearson's r (α level <0.05). Other statistical analyses were performed using the analysis of variance test. All other tests used are specified in the results.

RESULTS
Table 1 gives the location of the head injury lesions in the patients included in the study. There was a midline shift in 32 of the 119 cases (27%). The shift was from left to right in 20 patients and right to left in 12. Table 2 lists the mean (SD) of pressure, flow, and derived haemodynamic parameters.

The results show a significant correlation between differences in CCP across hemispheres and midline shift (r = 0.48; p < 0.02), indicating that a lower CCP can be seen at the side from which brain expands (fig 1). A similar picture was seen in patients with unilateral dominant contusion. CCP was lower at the side of contusion (p<0.007; signed rank test) (fig 2). In patients with one-side craniotomy (n = 16) CCP was lower at the side of surgery (p<0.006; signed rank test) (fig 3). CCP was not correlated with measured ICP (p = 0.17). The correlation between CCP and estimated cerebrovascular resistance was quite strong (r = 0.50; p<0.0001) (fig 4), indicating greater CCP associated with greater vascular resistance. CCP correlated inversely with brain swelling (r = −0.23; p<0.03). CCP did not correlate with outcome at six months after injury. In those individual cases where time related changes in ICP were recorded, good agreement can, anecdotally, be seen between dynamics of ICP and CCP (fig 5).
changes in the CCP waveform did at times match the changes in ICP. The period of around 2.5 minutes. Although the mean value of critical closing pressure (CCP) was strikingly different than mean value of ICP, CCP correlates with asymmetry of the injured brain. CCP is a poor estimator of mean intracranial pressure; it better correlates with asymmetry of haemodynamic parameters in patients with arterial walls. However in the relatively large group of the patients in the present study, the correlation between mean CCP and ICP was not significant. This, together with a lower CCP on the side of brain contusion or brain expansion in cases with visible midline shift, questions the role of CCP as a useful estimator of ICP.

To investigate what is the better measure for cerebral perfusion pressure: difference between ABP and ICP or difference between ABP and CCP, the analysis of outcome seems to be helpful, as greater mortality was historically always correlated with lower perfusion pressure. In those patients who died, “traditional” CPP (ABP–ICP) was significantly lower than in those who survived (died: 73.5 (14) mm Hg; survived: 79.5 (8.1) mm Hg; p<0.03; Mann–Whitney test). Correspondingly, the difference in ABP–CCP in these two groups of patients was not significant (died: 77 (26) mm Hg; survived 74 (35) mm Hg).

DISCUSSION

In the present study we sought to determine how CCP was affected by one-sided head lesions and to what extent did changes in CCP reflect findings on CT scans. The results show that CCP was asymmetrical across the hemispheres. More than 15% of our patients had an absolute difference in left–right CCP greater than the 95% confidence limit evaluated in healthy volunteers (14 mm Hg). In our material, the asymmetry of CCP was significantly correlated with midline shift, side of the original lesion, and side of the craniotomy. We found that CCP was lower on the side of the predominant hemisphere swelling and lower on both the side of the contusion and the craniotomy.

Absolute CCP had a significant (although weak) correlation with the extent of brain swelling, with a greater degree of swelling corresponding to a lower CCP. Conceptually, CCP has been compared to the sum of ICP and the tension of arterial walls. However in the relatively large group of the patients in the present study, the correlation between mean CCP and ICP was not significant. This, together with a lower CCP on the side of brain contusion or brain expansion in cases with visible midline shift, questions the role of CCP as a useful estimator of ICP.

On the other hand, if the cerebrovascular resistance can be simplistically expressed as the ratio: CPP/FV, CCP appears to correlate well with cerebrovascular resistance. However, the correlation may be artificial and result from the mathematical formulae rather than physiological associations. Furthermore, having CCP related to tone and therefore vascular resistance corresponds better to the CT findings than if it were related to ICP. The ICP will be higher on the side of the brain that expands in response to trauma as well as the side of the head that has sustained the dominant contusion and the therapeutic craniotomy. However, if the CCP is linked to the ICP, we would expect a raised CCP in those hemispheres that have sustained the injuries. Our results show that CCP was lower in these regions and that this difference may be due to damaged and dilated vessels which would have a lower vascular resistance than the vessels in the uninjured hemisphere.

Our results also cast a shadow on the interesting thesis that cerebral perfusion pressure can be expressed better by the difference between mean arterial pressure and CCP rather than by the difference of mean arterial pressure and ICP. CCP is undoubtedly an interesting variable with many possible clinical applications, however, the fact that vascular abnormalities (like vasospasm) may alter its original interpretation, is however disturbing. In our material, out of 119 patients, 16 had negative CCP without clear reason. Therefore, this index should be used with due care in clinical applications.

CONCLUSION

Critical closing pressure is a haemodynamic index that is affected in head injury patients. Side-to-side difference in CCP correlates with asymmetry of the injured brain. CCP is a poor estimator of mean intracranial pressure; it better describes cerebral vascular tone.

ACKNOWLEDGEMENTS

The authors are in debt to all members of the team participating in data collection: Mrs P Al-Rawi, Mrs C Turner, Mrs M Balestrieri, Dr S Piechnik, Dr L Steiner, and all nursing and research staff of NCCU.

Authors' affiliations

A Kumar, University of Cambridge Clinical School, Addenbrooke's Hospital, Cambridge, UK
E A Schmidt, M Hiler, P Smielewski, J D Pickard, M Czosnyka, Academic Neurosurgery Unit, Addenbrooke's Hospital, Cambridge UK
Supported by MRC Programme Grant (MRC G9439390 ID 56833)
Competing interests: none declared
M Czosnyka is on leave from Warsaw University of Technology, Poland.

REFERENCES

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. **Clinical Evidence** needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking authors:
- Child health: nocturnal enuresis
- Eye disorders: bacterial conjunctivitis
- Male health: prostate cancer (metastatic)
- Women’s health: pre-menstrual syndrome; pyelonephritis in non-pregnant women

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:
- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500–3000 words), using evidence from the final studies chosen, within 8–10 weeks of receiving the literature search.
- Working with **Clinical Evidence** editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every six months using any new, sound evidence that becomes available. The **Clinical Evidence** in-house team will conduct the searches for contributors; your task is simply to filter out high quality studies and incorporate them in the existing text.
- To expand the topic to include a new question about once every 12–18 months.

If you would like to become a contributor for **Clinical Evidence** or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Klara Brunnhuber (kbrunnhuber@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Topics are usually 1500–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for **Clinical Evidence**, please complete the peer review questionnaire at www.clinicalevidence.com or contact Klara Brunnhuber (kbrunnhuber@bmjgroup.com).
Asymmetry of critical closing pressure following head injury

A Kumar, E A Schmidt, M Hiler, P Smielewski, J D Pickard and M Czosnyka

J Neurol Neurosurg Psychiatry 2005 76: 1570-1573
doi: 10.1136/jnnp.2004.059493

Updated information and services can be found at:
http://jnnp.bmj.com/content/76/11/1570

These include:

References
This article cites 14 articles, 5 of which you can access for free at:
http://jnnp.bmj.com/content/76/11/1570#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Hypertension (380)
- Injury (478)
- Neurological injury (390)
- Trauma (479)
- Trauma CNS / PNS (390)
- Radiology (1747)
- Radiology (diagnostics) (1309)
- Mechanical ventilation (31)
- Mechanical ventilation (31)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/