Lateral transmuscular or combined interlaminar/paraisthmic approach to lateral lumbar disc herniation? A comparative clinical series of 48 patients

Y M Ryang, I Rohde, A Ince, M F Oertel, J M Gilsbach, V Rohde

Background: The optimum operative technique for lateral lumbar disc herniations (LLDH) remains unclear, and both interlaminar and extraspinal approaches are used.

Objective: To compare outcome after LLDH removal either by a lateral transmuscular approach (LTM) or by a combined interlaminar and paraisthmic approach (CIP).

Methods: 28 patients underwent surgery using CIP and 20 using LTM. All patients were operated on by the same neurosurgeon. The clinical presentation of the two groups was comparable. Overall outcome was assessed after a mean follow up period of between 19 and 37 months using the Ebeling classification. In addition, the effect of surgery on radicular pain, low back pain, and sensory and motor deficits was defined.

Results: Excellent to good results were achieved in 95% of the LTM group and 57% of the CIP group. The outcome was satisfactory to poor in 5% of the LTM and 43% of the CIP group (p<0.004). The percentage of sensorimotor deficit and of radicular pain improvement was higher in the LTM group. New low back pain was found exclusively in the CIP group (21%). The complication rate was 5% in the LTM group and 11% in the CIP group.

Conclusions: The LTM approach achieves a better overall outcome and improvement in radiculopathy. The complication rate is lower with the transmuscular route and the risk of new low back pain is minimised. These results are likely to be attributable at least in part to the lesser invasiveness of the LTM approach.

METHODS

Patients

The operative records of a single neurosurgeon (VR), hospital case notes, outpatient department and rehabilitation documents, and radiographic images were reviewed for all patients who underwent microsurgery for primary and recurrent lateral lumbar disc herniations. Patients with far lateral osseous stenosis were excluded. Patients who were treated by other surgeons in the same time period were excluded to minimise the bias from interindividual differences in operative techniques and skills.

In all, 48 patients with primary LLDH could be identified. Twenty of these (16 men and four women, mean age 49 years) were operated on by the LTM technique; the remaining 28 (13 men and 15 women, mean age 56 years) underwent surgery by the CIP technique. From 1991 to 1994, the preferred operative technique was the CIP route; from 1995 to 2000 the preferred technique was the LTM route.

Before surgery, all patients with radiculopathy and sensory deficits but without paresis underwent a course of conservative treatment with non-steroidal anti-inflammatory drugs, bed rest, and physiotherapy.

Abbreviations: CIP, combined interlaminar and paraisthmic (approach); LLDH, lateral lumbar disc herniation; LTM, lateral transmuscular (approach)
Surgical techniques
To localise the surgical segment, lateral fluoroscopy is carried out after positioning the patient. With a spinal needle inserted into the paraspinal muscles of the opposite side, the level of the transverse process of the superior body is marked. After insertion of the retractor, lateral fluoroscopy is repeated for reconfirmation of the correct level.

Far lateral transmuscular approach
A 4 cm horizontal skin incision is made approximately 5 cm lateral to the midline at the caudal limit of the transverse process of the superior body. The lumbodorsal aponeurosis is incised and the multifidus and longissimus muscles bluntly separated asatraumatically as possible with a dissector. After identifying the superior transverse process, the lateral facet joint, and the lateral isthmus (pars interarticularis), a self retaining Caspar retractor is inserted in a slightly oblique fashion and the microscope is brought into place. Parts of the adherent medial intertransverse muscle are removed. In only a few cases is an additional reduction of the lateral isthmus with a high speed drill necessary to visualise the lateral aspect of the ligamentum flavum. Even though this was rarely needed in our cases, the part of the isthmus that needs to be reduced to expose the lateral aspect of the yellow ligament is nevertheless highlighted in the illustration for better visual comprehension. After resection of lateral parts of the ligament the nerve root is exposed; it is usually dislocated cranially and dorsally by the disc herniation. The herniated disc material is exposed and removed. If necessary, the disc space is entered and emptied partially from the lateral aspect (figs 1 and 2).

Combined interlaminar and lateral paraisthmic approach
The first steps of the operation are the standard interlaminar approach to the intervertebral disc space, with partial hemilaminectomy and flavectomy. Hemilaminectomy and flavectomy have already been done microscopically. The lower nerve root is disclosed, and the intraforaminal part of the herniated disc and the nucleus pulposus tissue of the intervertebral disc space are removed. In the second part of the operation the paravertebral musculature is retracted further laterally to visualise the lateral border of the isthmus and the upper facet joint. In contrast to the LTM approach, lateral drilling of the isthmus (and occasionally of the uppermost part of the facet joint) is almost inevitably necessary to expose the lateral aspect of the ligamentum flavum, which is then removed. Directly beneath the ligament, the disc herniation, and lateral to it the upper nerve root, can be identified. Disc herniation and any intrrafornial disc fragments that have been overlooked are removed (figs 3 and 4).

Outcome assessment
The complications and the short and long term outcome were assessed by reviewing the patients’ hospital records for the immediate postoperative course, the results of the first follow up examination at six to eight weeks postoperatively, and the records from rehabilitation institutions. Direct standardised telephone interviews were used at six to 78 months after
surgery to assess the long term outcome (table 1). The Ebeling scale,30 an accepted European outcome scale after lumbar disc surgery,31 31 was applied to categorise the outcome.

The telephone interviewers (YR, IR) were not blinded to the operative procedure but did not take part in the surgical and postsurgical management of the patients. Long term outcome assessment of the CIP group was made in 1995, and of the LTM group in 2001, which explains the different mean follow up periods (CIP group 19 months; LTM group 36.5 months).

Statistical analysis

To compare the CIP with the LTM group for preoperative clinical presentation and long term outcome, we used the Mann–Whitney U test. The significance level was set to p<0.05.

RESULTS

Preoperative clinical presentation and neuroimaging

The features of the two patient groups relating to clinical symptoms, levels of involvement, location of the disc prolapse, previous surgery, and significant statistical differences are given in table 2.

Computed tomography was carried out in all patients, with additional magnetic resonance imaging in nine of the LTM group and seven of the CIP group. Radicular pain or neurological deficits were the main indications for surgery. Patients with low back pain alone were advised to have another trial of conservative treatment.

There was no significant difference between the two patient populations for clinical and demographic data (age, sex, preoperative and postoperative clinical symptoms, neurological deficits, or location of the prolapsed discs), proving that the two groups were homogeneous and therefore comparable. Exceptions were a higher percentage of preoperative low back pain in the LTM group (p<0.01) and a higher incidence of new postoperative low back pain in the CIP group (p<0.01).

Surgical outcome

LTM group

Long term outcome (mean follow up period of 36.5 months) was excellent in four (20%), good in 15 (75%), and satisfactory in one (5%) of the 20 patients (table 3).

Significant improvement after surgery in low back pain, radicular pain, and motor and sensory deficits was achieved in all patients in the LTM group except one whose sensory deficit was unchanged. The preoperative neurological state was not worsened in any of the 20 patients (table 4).

CIP group

Long term outcome (mean follow up period 18.8 months) was excellent in five (18%), good in 11 (39%), and satisfactory in nine of the 28 patients (32%). In three patients (11%) the outcome was poor (table 3).

Marked improvement in preoperative symptoms could also be achieved in the majority of patients in the CIP group. Though neurological deficits were not worsened in any patient, there was a significant number in whom radicular pain or motor/sensory deficits did not improve after surgery. In six patients (21%) new postoperative low back pain occurred (table 4).

LTM group versus CIP group

Symptom improvement was more pronounced in the LTM group. Motor deficit improvement was achieved in 100% v 80%; sensory deficit improvement in 94% v 74%; and radicular pain improvement in 100% v 86%. Low back pain improvement was 100% in both groups, but new low back pain occurred in 21% of the CIP group (p<0.01). There was no statistically significant difference between the groups concerning improvement in postoperative motor/sensory deficits and radicular pain. A substantial benefit from surgery (excellent to satisfactory results) was reported by all patients

Table 1 Ebeling outcome criteria for overall assessment of the results of lumbar disc surgery

<table>
<thead>
<tr>
<th>Classification</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>Free of neurological symptoms with no/occasional mild low back pain or radicular pain; normal working capability</td>
</tr>
<tr>
<td>Good</td>
<td>Mild residual motor or sensory deficit and/or mild low back pain or radicular pain; normal working capability</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>Significant improvement of motor or sensory deficits and pain; reduced working capability</td>
</tr>
<tr>
<td>Poor</td>
<td>No or insufficient improvement of pain and/or motor or sensory deficits; reduced working capability/incapable of work</td>
</tr>
</tbody>
</table>

Table 2 Presenting symptoms grouped according to the selected approach (lateral transmuscular approach (LTM) versus combined interlaminar/paraisthmic approach (CIP))

<table>
<thead>
<tr>
<th>Clinical features</th>
<th>LTM</th>
<th>CIP</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low back pain</td>
<td>14 (70%)</td>
<td>6 (21%)</td>
<td><0.01</td>
</tr>
<tr>
<td>Radicular pain</td>
<td>19 (95%)</td>
<td>28 (100%)</td>
<td>NS</td>
</tr>
<tr>
<td>Sensory deficit</td>
<td>16 (80%)</td>
<td>19 (68%)</td>
<td>NS</td>
</tr>
<tr>
<td>Motor deficit</td>
<td>12 (60%)</td>
<td>15 (54%)</td>
<td>NS</td>
</tr>
<tr>
<td>Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3/4</td>
<td>9 (45%)</td>
<td>4 (14%)</td>
<td></td>
</tr>
<tr>
<td>L4/5</td>
<td>6 (30%)</td>
<td>16 (61%)</td>
<td></td>
</tr>
<tr>
<td>L5/S1</td>
<td>5 (25%)</td>
<td>7 (25%)</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraforaminal</td>
<td>12 (60%)</td>
<td>13 (46%)</td>
<td></td>
</tr>
<tr>
<td>Intra/extraforaminal</td>
<td>8 (40%)</td>
<td>4 (14%)</td>
<td></td>
</tr>
<tr>
<td>Intraforaminal</td>
<td>0</td>
<td>11 (39%)</td>
<td></td>
</tr>
<tr>
<td>Previous surgery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same location</td>
<td>2 (10%)</td>
<td>1 (4%)</td>
<td></td>
</tr>
<tr>
<td>Different level</td>
<td>6 (30%)</td>
<td>4 (14%)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4 Transverse aspect of the combined interlaminar/paraisthmic approach (CIP) with lateral disc herniation and inserted retractor (step 1: interlaminar medial position of retractor; step 2: paraisthmic lateral position of same retractor).
in the LTM group and by 89% of the patients in the CIP group. Excellent to good outcome was more likely in the LTM group (p<0.004), while satisfactory to poor outcome was more likely in the CIP group (p<0.004), showing that the overall outcome was significantly better for the LTM group.

Complications

LTM group
One patient presented with a recurrent disc herniation 16 months post-surgery. The patient was treated conservatively and made a satisfactory recovery. The complication rate in the LTM group was 5%.

CIP group
Three patients presented with symptomatic scar tissue formation. One patient underwent two further operations and had a poor outcome because of unchanged radicular pain and lack of improvement in sensory and motor deficits. Each of the other two patients underwent one further operation; one had a satisfactory and the other a poor outcome, with unchanged radicular pain. Two patients had fractures of the thinned pars interarticularis on postoperative x-ray. However, this complication did not interfere with good recovery in one patient, who only complained of minor low back pain postoperatively; the other patient had a poor outcome despite improved motor deficits, because of unchanged radicular pain and sensory deficits. Low back pain after surgery was mild in this latter patient. In one patient a dural tear with intraoperative cerebrospinal fluid flow occurred. The dural tear was sutured directly without any further sequelae and the patient had an excellent recovery. The complication rate in the CIP group was 21%.

DISCUSSION

Various different surgical approaches to LLDH, with their advantages and disadvantages, have been described since 1974. Many neurosurgeons still use the anatomically familiar posterior midline interlaminar approach with hemilaminectomy and partial to complete facetectomy.\(^3\)\(^{15}\)\(^{17}\)\(^{24}\)\(^{33}\) However, good to excellent results after facetectomy are achieved in only 70%.\(^{24}\) A minor disadvantage of this approach is the need for substantial nerve root manipulation if the disc prolapse is lateral to the upper nerve root. A major disadvantage, and possibly the explanation for the less favourable results, is the destabilisation of the spinal segment owing to removal of the facet joint. In the Epstein’s series, six of 170 patients (4%) required reoperation for spinal fusion.\(^{24}\) Because of the impending instability, Kunogi and Hasue routinely carried out spinal fusion after facetectomy for LLDH.\(^{33}\)

The combined interlaminar and paraisthmic (CIP) approach
The CIP approach allows control of the complete neuroforamen and visualisation of both the upper and the lower nerve roots without destroying the facet joint.\(^{21}\)\(^{24}\) Furthermore, it provides exposure of the extraspinal and intraspinal intervertebral disc space with the possibility of achieving a more thorough nucleotomy. By doing the paraisthmic part of surgery after the standard interlaminar approach, the operative field remains familiar to the surgeon. From 1991 to 1994, VR exclusively used the CIP approach because of his preference for dealing with familiar anatomy. In our series, the long term outcome in the CIP group was excellent to satisfactory in 89%, which is in line with other published series,\(^{21}\)\(^{24}\) and better than for the more invasive and destabilising facetectomy. More patients suffered from low back pain after surgery, which could reflect an excessive degree of bony resection. The gross integrity of the joint is preserved with the CIP approach, but nonetheless the joint may be irritated, with resulting low back pain. Late fractures of the pars interarticularis, as seen in two of our patients, support the view that the CIP approach remains a fairly invasive procedure. Another cause for increased low back pain may be the dorsomedian approach with extensive subperiostial muscle retraction. This may endanger the posterior rami of the spinal nerves of the deep paraspinal muscles and cause denervation, resulting in increased low back pain immediately after surgery because of direct trauma to the paraspinal muscles, and long term low back pain from sequelae of denervation (muscle atrophy, muscle dysfunction, and segmental dynamic instability).\(^{21}\)\(^{24}\)\(^{34}\)

The lateral transmuscular (LTM) approach
This minimal access procedure, which has been extensively described,\(^{27}\)\(^{36}\) is significantly better than facetectomy and gives better results than ours and other surgeons’ using the CIP approach. Osseous removal is reduced to a minimum: Only the lateroinferior part of the isthmus has to be drilled away, if any. The oblique approach enables the surgeon to view nearly the entire neuroforamen. The facet joint usually remains untouched in most patients. Thus the risk of postoperative instability and a chronically irritated joint is

Table 3

<table>
<thead>
<tr>
<th>Outcome</th>
<th>LTM</th>
<th>CIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>4 (20%)</td>
<td>5 (18%)</td>
</tr>
<tr>
<td>Good</td>
<td>15 (75%)</td>
<td>11 (39%)</td>
</tr>
<tr>
<td>Satisfactory</td>
<td>1 (5%)</td>
<td>9 (32%)</td>
</tr>
<tr>
<td>Poor</td>
<td>0</td>
<td>3 (11%)</td>
</tr>
</tbody>
</table>

Overall postoperative results with respect to the approach used (lateral transmuscular (LTM) and combined interlaminar/paraisthmic (CIP))

Table 4

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Total preop</th>
<th>Resolved</th>
<th>Improved</th>
<th>Unchanged</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low back pain</td>
<td>LTM 14</td>
<td>6 (43%)</td>
<td>8 (57%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CIP 6</td>
<td>3 (50%)</td>
<td>3 (50%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Radicular pain</td>
<td>LTM 19</td>
<td>14 (74%)</td>
<td>5 (26%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CIP 28</td>
<td>15 (54%)</td>
<td>9 (32%)</td>
<td>4 (14%)</td>
<td>0</td>
</tr>
<tr>
<td>Motor deficit</td>
<td>LTM 12</td>
<td>5 (42%)</td>
<td>7 (58%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CIP 15</td>
<td>3 (20%)</td>
<td>9 (60%)</td>
<td>3 (20%)</td>
<td>0</td>
</tr>
<tr>
<td>Sensory deficit</td>
<td>LTM 16</td>
<td>4 (25%)</td>
<td>11 (69%)</td>
<td>1 (6%)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CIP 19</td>
<td>3 (26%)</td>
<td>9 (47%)</td>
<td>5 (26%)</td>
<td>0</td>
</tr>
</tbody>
</table>

Preop, preoperative.
reduced. The rather gentle muscle splitting procedure avoids the risk of denervation of the dorsal ramus, explaining the relief from low back pain in all the patients. No new low back pain or late fracture of the pars interarticularis occurred. Disadvantages of the LTM approach are the unfamiliar extraspinal anatomy, the steep learning curve especially in the presence of anatomical variations, and the difficulty in removing truly intraspinal fragments of the disc safely. In the case of an LLDH at level L5/S1, the oblique view of the herniation may be hampered by a high iliac crest or by a thick degenerative facet joint. Osseous reduction is therefore more necessary than in higher segments. If visualisation is limited, the superomedial part of the iliac crest can be reduced. The most superolateral part of a hypertrophic joint is only resected subsequently if the operative approach is still too limited for identification of the nerve root and the disc herniation. Currently, the LTM approach is the preferred one for lateral lumbar disc herniations at our institution.

Approach selection

Ampel operative experience and good imaging techniques—showing the site of disc herniation with sufficient detail—allow the surgeon to select the approach which best fits the individual patient. However, only a few surgeons have acquired sufficient expertise to do this, because of the relative rarity of LLDH.16 It is more common for a single approach to be used for all LLDH cases. Thus a comparison of the CIP with the LTM approach, which are both frequently used, seemed justified.

Limitation of the study

We did not carry out a prospective randomised study. Rather, we compared two consecutive retrospective series conducted independently. The first series examined the CIP approach, which was the commonly used approach in the early period covered by the study. A second series investigated the LTM approach, which gradually replaced the CIP approach. The study of two independent consecutive series is the explanation for the different follow up periods. In the first series, follow up was planned for 18 months, and in the second series for 36 months. As the clinical outcome tends to deteriorate over time, the more favourable results in the LTM group despite a longer follow up is further evidence in favour of the LTM approach. The main reason for this is the more gentle muscle splitting procedure in the beginning and the LTM approach later on, resulting in two learning periods for the surgeon. However, the increasing general surgical experience over time may have influenced the postoperative results in favour of the LTM approach, as this was the one used in the later period of the study. Nevertheless, even though our study was a retrospective, non-randomised trial, we believe that it allowed a good comparison of these two approaches to lateral lumbar disc herniation.

In our series we excluded patients with a purely osseous stenosis. We are aware that there is a high coincidence of lateral disc herniation with concomitant stenosis. We have treated patients with accompanying stenosis with both of the approaches described here, as proposed by Ahn et al., who use a lateral endoscopic procedure, whereas Hejazi et al use a combined approach.46 Our main focus in this study was nevertheless targeted towards the surgical outcome of patients with pure lateral disc prolapses.

Conclusions

The operative results of the LTM approach are better than those of the CIP approach. We believe that the better results are related to the lesser degree of invasiveness of the LTM approach. A minimal amount of bone removal at the lateral pars interarticularis allows complete visualisation of the extraforaminal/intraforaminal area and leaves the facet joint untouched, which we assumed to be beneficial for avoidance of instability and low back pain. At our institution, the LTM approach is the procedure of choice for patients with lateral lumbar disc herniations. It is possible that endoscopic LTM surgery will replace microsurgical LTM in the future as an even less invasive procedure.

Authors’ affiliations

YM Yang, I Rohde, A Ince, M F Oertel, J M Gilsbach, V Rohde, Department of Neurosurgery, Aachen University (RWTH), Germany

Competing interests: none declared

REFERENCES

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking authors:
- Child health: nocturnal enuresis
- Eye disorders: bacterial conjunctivitis
- Male health: prostate cancer (metastatic)
- Women’s health: pre-menstrual syndrome; pyelonephritis in non-pregnant women

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:
- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500–3000 words), using evidence from the final studies chosen, within 8–10 weeks of receiving the literature search.
- Working with Clinical Evidence editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every six months using any new, sound evidence that becomes available. The Clinical Evidence in-house team will conduct the searches for contributors; your task is simply to filter out high quality studies and incorporate them in the existing text.
- To expand the topic to include a new question about once every 12–18 months.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Klara Brunnhuber (kbrunnhuber@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Topics are usually 1500–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com or contact Klara Brunnhuber (kbrunnhuber@bmjgroup.com).
Lateral transmuscular or combined interlaminar/paraisthmic approach to lateral lumbar disc herniation? A comparative clinical series of 48 patients

Y M Ryang, I Rohde, A Ince, M F Oertel, J M Gilsbach and V Rohde

J Neurol Neurosurg Psychiatry 2005 76: 971-976
doi: 10.1136/jnnp.2004.051102

Updated information and services can be found at:
http://jnnp.bmj.com/content/76/7/971

These include:

References
This article cites 37 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/76/7/971#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Pain (neurology) (763)
- Musculoskeletal syndromes (537)
- Neuromuscular disease (1311)
- Peripheral nerve disease (631)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/