Headache as the only neurological sign of cerebral venous thrombosis: a series of 17 cases

R Cumurciuc, I Crassard, M Sarov, D Valade, M G Bousser

See Editorial Commentary, p 1043

Background: Headache is the most frequent symptom in cerebral venous thrombosis (CVT), and usually the first. However, it has rarely been reported as the only symptom of CVT.

Objectives: To study the characteristics of patients in whom headache was the only presentation of CVT in the absence of intracranial hypertension, subarachnoid haemorrhage (SAH), meningitis, or other intracranial lesion.

Methods: From a prospective study of 123 consecutive patients with CVT only those with isolated headache and normal brain computed tomography (CT) scan and cerebrospinal fluid (CSF) examination were included in the present study. All patients underwent an extensive systematic aetiological work-up and were given intravenous heparin followed by oral anticoagulants. A detailed description of the headache was obtained.

Results: Headache was only sign of CVT in 17 patients. The lateral sinus was the most frequently involved sinus (n=15). Onset of headache was progressive in 11, acute in 3, and thunderclap in 3 patients. Once established, the headache was continuous in 15, diffuse in four and unilateral in 13, usually ipsilateral to the occluded lateral sinus. No specific risk factor or cause was found. All had a favourable evolution.

Conclusion: The pathogenesis of isolated headache in CVT in the absence of intracranial hypertension, SAH, meningitis or intracerebral lesion is unknown but may involve changes in the walls of the occluded sinus. Hence MRI/MRV should be used to look for signs of CVT in all patients with recent headache (progressive or thunderclap) even when the CT scan and CSF examination are normal.

Cerebral venous thrombosis (CVT) is an uncommon cerebrovascular disease presenting with a remarkably wide spectrum of signs and mode of onset. In all series, headache is the most frequently occurring symptom at any time, present in over 80% of cases, and it is also the commonest initial symptom. The headache has no specific features and is almost invariably associated with other neurological signs such as papilloedema, focal deficits, seizures, disorders of consciousness, or cranial nerve palsies. These signs can be grouped into four main syndromes: isolated intracranial hypertension, focal syndrome, diffuse encephalopathy, and cavernous sinus syndrome. In rare cases of CVT, the headache is not accompanied by any clinical findings, but brain computed tomography (CT) scanning and/or cerebrospinal fluid (CSF) examination usually reveal conditions that explain the headache, such as subarachnoid haemorrhage (SAH), intracerebral infarction or haemorrhage due to the CVT, or meningitis related to the aetiology of CVT. Headache as the only presentation of CVT in the absence of such conditions is rare.

In this paper we present the characteristics of 17 patients—from a prospective series of 123 patients with CVT seen over four years at our institution—in whom headache was the only clinical presentation of CVT in the absence of intracranial hypertension, SAH, meningitis, or other intracranial lesion as assessed by head CT and/or CSF examination.

PATIENTS AND METHODS

The present study is based on a prospective cohort of 123 consecutive patients with CVT admitted to our department between December 1999 and July 2004, of whom 28 were included in the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Diagnosis of CVT was based on magnetic resonance imaging (MRI) combined with MR venography (MRV), and/or helical CT venography and/or conventional angiography.

Patients were included in the present study if headache was the only manifestation of CVT in the absence of intracranial hypertension (no papilloedema and/or normal CSF pressure), SAH (no blood on CT scan and CSF examination), meningitis (normal CSF), or any intracerebral lesion on CT scan and/or MRI.

We obtained a detailed description of the headache including its mode of onset, location, severity, pattern, and evolution. The headaches were classified into different types according to the criteria of the International Headache Society (IHS). For all patients we recorded the past history of the headache and residual headache three months after CVT. A visual analogue scale (VAS) was used to record pain severity (severe headache = VAS >7). Three modes of onset of the headache were defined depending on the time between the initial pain sensation and the most severe headache:

- “thunderclap”—sudden onset of an excruciating headache (VAS more than 8/10), reaching maximum intensity in less than one minute, and lasting more than one hour
- acute headache developing in less than 24 hours
- progressive over 24 hours. After 24 hours, the pain was characterised as continuous or intermittent (with headache free periods).

Abbreviations: CT, computed tomography; CSF, cerebrospinal fluid; CVT, cerebral venous thrombosis; ISCVT, International Study on Cerebral Vein and Dural Sinus Thrombosis; MRI/V, magnetic resonance imaging/venography; SAH, subarachnoid haemorrhage; VAS, visual analogue scale.
All patients underwent an extensive systematic aetiological work-up in which we looked for the main causes and risk factors of CVT such as systemic diseases, malignancies, haematologic disorders, antiphospholipid syndrome, and local (infectious or non-infectious) causes. Treatment was based on intravenous unfractionated heparin, followed by oral anticoagulation for six months or longer according to the aetiology of CVT. All the patients were prescribed analgesics or narcotics according to the severity of their headache.

RESULTS
Of 28/123 patients (23%) who presented with headache as only neurological symptom on admission, 17 (14%; six men and 11 women; mean age 37.6 years, range 22–5; table 1) satisfied our inclusion criteria. Eight patients (47%) were recruited through the emergency headache centre and nine were admitted directly to the neurology unit.

The mean delay between onset and diagnosis was 13.1 days (range 0–30). The shortest delay (less than 24 hours) was observed in two patients with thunderclap headache and the longest in another two patients, of whom one had a progressive and the other an acute headache. One of the longest delays occurred in a patient with several episodes of thunderclap headache. Predisposing factors or causes of CVT were as follows: current oral contraceptive use (n = 9), antiphospholipid antibody syndrome with systemic lupus erythematosus (n = 2), thrombophilia due to protein S deficiency and/or factor V Leiden mutation (n = 3), and iron deficiency anaemia (n = 2). No cause was found in four patients, two of whom had a history of recurrent venous thrombosis. The sinus most frequent involved was the lateral sinus (n = 15), either isolated (n = 8) or in association with jugular vein thrombosis (n = 4) or with other sinuses (n = 3). The superior sagittal sinus was involved in four patients (isolated in two and associated with lateral sinus and deep venous system in the other two). An initial non-contrast CT scan was performed in 15 patients. It showed a definite spontaneous hyperdensity of one or several sinuses in nine patients and was normal in six patients (fig 1).

The main headache characteristics are given in table 2. Four patients had a history of migraine without aura before CVT. In three the headache differed from their usual migraine, and the time from onset to diagnosis was six to seven days. One patient had a headache that was initially similar to her usual migraine attacks but it persisted. She was evaluated 23 days after onset. The onset of headache was progressive over a few days in 65% (n = 11), acute in 17.5% (n = 3), and thunderclap in 17.5% (n = 3) of the patients. Once established, the headache was continuous in 88% (n = 15); two of these had superimposed attacks of

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Time from onset to diagnosis (days)</th>
<th>Predisposing factor/cause</th>
<th>Site of thrombosis</th>
<th>Non-contrast CT scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>40</td>
<td><1</td>
<td>No</td>
<td>SSS, RLS, DVS</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>26</td>
<td>23</td>
<td>Oral contraception</td>
<td>SSS, RLS, DVS</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>40</td>
<td>2</td>
<td>Recurrent venous thrombosis</td>
<td>LLS</td>
<td>Normal</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>41</td>
<td>15</td>
<td>SLE + APL</td>
<td>LLS, LV</td>
<td>Normal</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>32</td>
<td><1</td>
<td>Oral contraception</td>
<td>RLS, RJV</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>33</td>
<td>6</td>
<td>Oral contraception</td>
<td>RLS, RJV</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>31</td>
<td>6</td>
<td>Oral contraception</td>
<td>LLS</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>29</td>
<td>15</td>
<td>Gastric carcinoma, oral contraception, iron deficiency anaemia</td>
<td>RLS</td>
<td>Normal</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>26</td>
<td>30</td>
<td>Oral contraception</td>
<td>RLS</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>30</td>
<td>20</td>
<td>SLE + APL</td>
<td>LLS, DVS</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>56</td>
<td>7</td>
<td>Recurrent venous thrombosis</td>
<td>LLS</td>
<td>Spontaneous hyperdensity</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>51</td>
<td>15</td>
<td>Oral contraception, factor V Leiden mutation</td>
<td>LLS, LV</td>
<td>Normal</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>57</td>
<td>11</td>
<td>Protein-S deficiency, factor V Leiden mutation</td>
<td>RLS</td>
<td>–</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>38</td>
<td>30</td>
<td>Oral contraception</td>
<td>LLS</td>
<td>Normal</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>51</td>
<td>6</td>
<td>Factor V Leiden mutation</td>
<td>SSS</td>
<td>Normal</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>22</td>
<td>27</td>
<td>Oral contraception, iron deficiency anaemia</td>
<td>SSS</td>
<td>Normal</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>37</td>
<td>10</td>
<td>No</td>
<td>RLS</td>
<td>Spontaneous hyperdensity</td>
</tr>
</tbody>
</table>

APL, antiphospholipid syndrome; DVS, deep venous system; F, female; LV, left jugular vein; LLS, left lateral sinus; M, male; RJV, right jugular vein; RLS, right lateral sinus; RVT, recurrent venous thrombosis; SLE, systemic lupus erythematosus; SSS, superior sagittal sinus.
The mechanism of headache in CVT in the absence of intracranial hypertension, SAH, meningitis, or intracranial lesions is unknown. Stretching or irritation of nerve fibres in the walls of the occluded sinus is a possibility. It is also lacking or doubtful.

The mechanism of headache in CVT in the absence of intracranial hypertension, SAH, meningitis, or intracranial lesions is unknown. Stretching or irritation of nerve fibres in the walls of the occluded sinus is a possibility. It is also lacking or doubtful.
possible that a local inflammatory reaction occurs with dilatation of vessels in the sinus walls as suggested by the frequent contrast enhancement surrounding the clot, known as the “empty delta sign”.

In conclusion, isolated headache can be the only clinical sign of CVT in the absence of intracranial hypertension, SAH, meningitis or intracerebral lesion. In such cases CVT mostly involves a lateral sinus, either alone or in association with other sinuses. The headache is usually progressive over a few days, severe, persistent, unilateral and throbbing, but a few patients have sudden onset or even a thunderclap headache. The pathogenesis of the headache is unknown but may involve changes in the walls of the thrombosed sinus. Plain CT scan frequently shows a hyperdense sinus, but it is normal in 40% of patients. This points to a need for MRI/MRV in all patients with recent headache—progressive or thunderclap—with normal CT scan and CSF examination.

Authors’ affiliations
R Cumurciuc, I Crassard, M G Bousser, Department of Neurology, Lariboisière Hospital, Paris, France
M Sarov, D Valade, Department of Emergency Headache Centre, Lariboisière Hospital, Paris, France

Competing interests: none declared

REFERENCES
Headache as the only neurological sign of cerebral venous thrombosis: a series of 17 cases
R Cumurciuc, I Crassard, M Sarov, D Valade and M G Bousser

J Neurol Neurosurg Psychiatry 2005 76: 1084-1087
doi: 10.1136/jnnp.2004.056275

Updated information and services can be found at:
http://jnnp.bmj.com/content/76/8/1084

These include:

References
This article cites 11 articles, 4 of which you can access for free at:
http://jnnp.bmj.com/content/76/8/1084#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Headache (including migraine) (459)
Pain (neurology) (763)
Infection (neurology) (494)
Hypertension (380)
Radiology (1747)
Radiology (diagnostics) (1309)
Stroke (1449)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/