Decline in intelligence is associated with progression in white matter hyperintensity volume

E Garde, E Lykke Mortensen, E Rostrup, O B Paulson

OBJECTIVES: To quantify the time course of white matter hyperintensities (WMH) and assess the association between progression and cognitive decline in non-demented octogenarians.

METHODS: From a Danish cohort of 698 people born in 1914, 26 participated in neuropsychological assessment (Wechsler adult intelligence scale) initiated at age 50, including cognitive testing and cerebral magnetic resonance imaging at the 80 and 85 year studies. WMH volumes were quantified and partial correlations were calculated between WMH volume change and decline in WAIS scores from 80 to 85.

RESULTS: Progression in WMH volume ranged from 0 ml to 20.7 ml, providing a median increase of 2.6 ml (range 0.1 to 20.7, p < 0.001) and, with a mean time interval between scans of 3.8 years, a rate of progression of 0.63 ml/year. WMH volume measures for the two hemispheres were highly correlated (r = 0.95) and did not differ significantly. Increase in WMH volume was correlated with a simultaneous decline in verbal IQ (r = −0.65, p = 0.001), while baseline WMH was associated with subsequent decline in performance subtests (digit symbol, r = −0.57, p = 0.02).

Conclusions: The association between WMH and decline in essential cognitive abilities even in well preserved elderly people suggests that WMH should be regarded as a risk factor for cognitive impairment and dementia.
found between rated score and WMH volume for baseline (Pearson \(r = 0.75 \), \(p < 0.001 \)) and follow up values (\(r = 0.80 \), \(p < 0.001 \)), but not between the corresponding progression values (\(r = 0.29 \)), confirming results from a recent study.19

As MRI hyperintensity volumes had a positively skewed distribution, all analyses were repeated using a square root transformation of WMH volumes. In analyses of correlations between WMH volume and WAIS scores, sex, education, and the corresponding WAIS test score at age 50 were included as covariates in an attempt to reduce statistical noise caused by non-age-related individual differences in cognitive function.20

RESULTS

Demographic data for the 26 individuals participating in both MRI studies are shown in table 1. For comparison, data for the MRI sample and total population at age 50 are also shown. Participants who participated in both MRI studies 35 years earlier had a slightly lower body mass index at age 50 (\(p = 0.067 \)) and were better educated (\(p = 0.094 \)), but no significant differences were found between the groups.

Table 2 presents IQ scores, WMH volumes, and correlations from the regression analysis of WAIS decline scores and WMH volumes. From baseline to follow up a significant decline in test scores was observed for the three WAIS IQs and several subtests. No significant sex difference in decline scores was found. At the 80 year study, the 26 subjects participating in both MRI examinations obtained higher mean IQ scores than the 22 subjects participating in the 85 year psychological study but declining a scan at follow up. However, with a standard deviation for full scale IQs of 16.81 at baseline and 16.12 at follow up for the MRI sample, and a theoretical population standard deviation of WAIS IQs of 15, the sample variance is not restricted to an extent that prohibits analysis of the correlations between MRI results and intellectual functioning. Mean MMSE score at follow up was also significantly higher for the 26 follow up subjects than for the 22 who declined a second MRI, at 26.9 (2.7) v 24.2 (5.3) , \(p = 0.03 \).

Progression in WMH volume ranged from 0 ml to 20.7 ml (table 2) and with an average follow up period of 3.8 years

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Clinical characteristics of the study sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 year study</td>
</tr>
<tr>
<td>Variable</td>
<td>MRI sample</td>
</tr>
<tr>
<td>Sample size</td>
<td>26</td>
</tr>
<tr>
<td>Age (years)</td>
<td>50.2 (0.1)</td>
</tr>
<tr>
<td>Education (score*)</td>
<td>4.0 (1.5)</td>
</tr>
<tr>
<td>Sex, male</td>
<td>16 (62%)</td>
</tr>
<tr>
<td>BP, systolic (mm Hg)</td>
<td>136.0 (17.4)</td>
</tr>
<tr>
<td>BP, diastolic (mm Hg)</td>
<td>83.7 (8.6)</td>
</tr>
<tr>
<td>Blood glucose (mmol/l)</td>
<td>5.5 (0.5)</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>23.8 (2.4)</td>
</tr>
<tr>
<td>Cholesterol, total (mmol/l)</td>
<td>7.7 (1.2)</td>
</tr>
<tr>
<td>Hypertension, history/treated</td>
<td>5 (19%)</td>
</tr>
<tr>
<td>Diabetes, history/treated</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Angina</td>
<td>4 (15%)</td>
</tr>
</tbody>
</table>

Values are mean (SD) or n [%].
* A 7 point index based on a combination of school education (scored on 1 to 3 point scale) and vocational training (scored on a 1 to 5 point scale).20

BMI, body mass index; BP, blood pressure; MRI, magnetic resonance imaging.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>MRI volumes, WAIS test scores, and correlation between IQ change and WMH measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured MRI and WAIS values</td>
<td>Correlations</td>
</tr>
<tr>
<td>Variable</td>
<td>Baseline</td>
</tr>
<tr>
<td>WMH volume/ml</td>
<td>4.7 (0 to 44.2)</td>
</tr>
<tr>
<td>Full IQ</td>
<td>95.52 (16.12)</td>
</tr>
<tr>
<td>Verbal IQ</td>
<td>97.73 (16.68)</td>
</tr>
<tr>
<td>Information</td>
<td>19.62 (4.04)</td>
</tr>
<tr>
<td>Comprehension</td>
<td>15.58 (4.27)</td>
</tr>
<tr>
<td>Arithmetic</td>
<td>11.00 (3.23)</td>
</tr>
<tr>
<td>Similarities</td>
<td>17.23 (4.60)</td>
</tr>
<tr>
<td>Digit span</td>
<td>9.38 (1.88)</td>
</tr>
<tr>
<td>Vocabulary</td>
<td>56.58 (10.53)</td>
</tr>
<tr>
<td>Performance IQ</td>
<td>93.30 (13.28)</td>
</tr>
<tr>
<td>Digit symbol</td>
<td>34.38 (9.80)</td>
</tr>
<tr>
<td>Picture completion</td>
<td>12.39 (3.61)</td>
</tr>
<tr>
<td>Block design</td>
<td>30.64 (5.69)</td>
</tr>
<tr>
<td>Picture arrangement</td>
<td>18.45 (6.48)</td>
</tr>
<tr>
<td>Object assembly</td>
<td>28.68 (6.29)</td>
</tr>
</tbody>
</table>

WMH volumes are median (range) and WAIS raw scores are mean (SD).
For WMH increase, the table presents adjusted (partial) and non-adjusted (bivariate) correlations with cognitive decline between the two assessments. Partial correlations are adjusted for sex, education, and the corresponding 50 year test score; n number of subjects completing the test.

* \(p < 0.001 \); \(p < 0.01 \); \(p < 0.05 \); \(p < 0.1 \).

MRI, magnetic resonance imaging; WAIS, Wechsler adult intelligence scale; WMH, white matter hyperintensities.
(range 3.0 to 4.8 years) amounted to a median rate of progression of 0.63 (0 to 6.8) ml per year. WMH volume measures for the two hemispheres were highly correlated (r = 0.95, p < 0.001) and did not differ significantly. Baseline MRI showed lacunar infarcts in five subjects but no cortical infarcts. At follow up one more participant had a lacunar infarct while two subjects revealed clinically undetected cortical infarcts.

Increase in WMH volume was significantly correlated to a simultaneous decline in verbal IQ (r = −0.65, p = 0.001), and baseline WMH was associated with subsequent decline in performance subtests (digit symbol r = −0.57, p = 0.02) but no association was observed between WMH volume and absolute WAIS or MMSE test scores. The correlations were similar for both hemispheres. Adjusting for the 50 year test score instead of the 50 year score had no marked effect on the partial correlations and, when baseline WMH was included as a covariate, the analyses showed essentially the same results as reported here. Analysis based on a square root transformation of WMH volume showed a very similar pattern of results.

DISCUSSION

Our most remarkable finding is the significant correlation between increase in WMH volume and a simultaneous decline in verbal IQ scores. Previously published data from our 80 year study of the 1914 cohort show substantial decline in the verbal part of the WAIS, although still less than the often observed decline in non-verbal subtests.20 The verbal tests mainly assess accumulated knowledge and experience and the ability to access this material. In daily life, impairment in these functions probably plays an even more important role than impairment of non-verbal functions. Bearing in mind the small sample size, a correlation of 0.65—corresponding to 43% explained variance—suggests strong effects of WMH increase in old age. Although smaller than most cross sectional studies, our study benefits from a community dwelling sample, homogeneous with respect to age. As in most longitudinal studies, selection bias is unavoidable, and may have weakened the in-sample relation between increase in WMH volume and cognitive decline. If so, the true association has been underestimated. On the other hand, both WMH volume and cognitive performance scores varied considerably in our population and, with frequencies of cardiovascular risk factors similar to those reported in other population studies, they suggest susceptibility to lifelong exposure to cardiovascular risk factors.4 4 Accordingly, our sample does not seem highly selected despite the unavoidable effect of selective mortality.

As our subjects have participated in this population study for 35 years, baseline assessment of cognitive performance could have been included in the correlation analysis. We regard the test scores from age 50 as the best available proxy for the large individual differences in cognitive function before the onset of age related changes. Such pre-existing individual differences may dilute the correlation between WMH and cognitive function. Consequently, inclusion of the corresponding 50 year test score as a covariate should lead to higher partial correlations. This is indeed what we observed. Another interesting finding is the significant correlation between baseline WMH volumes and subsequent decline in cognitive function. This corroborates previous findings and supports the view that WMH may be a valuable predictor of clinical outcome.11 12 Larger longitudinal studies are needed, but our results suggest that the presence of WMH should be taken seriously, irrespective of the size of the WMH and the age of patient. We suggest that WMH be regarded a risk factor which may be associated with decline in essential cognitive abilities, even in well preserved older subjects, within a relatively short time span.

ACKNOWLEDGEMENTS

We thank the MRI technicians and other staff involved in data collection at the Danish Research Centre of Magnetic Resonance (Hvidovre), and the Centre of Preventive Medicine (Glostrup). We acknowledge the contribution of Mogens Kleven (deceased) to all psychological studies of the 1914 cohort. This research was supported by the Velux Foundation, the Copenhagen Hospital Corporation Research Foundation, the Elsass Foundation, and the Simon Spies Foundation. The sponsors had no role in study design, data collection, data analysis, data interpretation, or writing the report.

Authors’ affiliations

E Garde, E Rostrup, Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark

E Lykke Mortensen, Department of Health Psychology, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark

O B Paulson, Neuroimaging Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark

Competing interests: none declared

Correspondence to: Dr Ellen Garde, National Hospital for Neurology and Neurosurgery, Dementia Research Centre, Box 16, 8–11 Queen Square, London WC1N 3BG, UK; ellen@magnet.drcmr.dk

Received 8 October 2004

In revised form 30 January 2005

Accepted 31 January 2005

REFERENCES

Decline in intelligence is associated with progression in white matter hyperintensity volume

E Garde, E Lykke Mortensen, E Rostrup and O B Paulson

J Neurol Neurosurg Psychiatry 2005 76: 1289-1291
doi: 10.1136/jnnp.2004.055905

Updated information and services can be found at:
http://jnnp.bmj.com/content/76/9/1289

These include:

References
This article cites 18 articles, 5 of which you can access for free at:
http://jnnp.bmj.com/content/76/9/1289#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Memory disorders (psychiatry) (1390)
- Stroke (1449)
- Dementia (1020)
- Radiology (1747)
- Radiology (diagnostics) (1309)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/