Treatment for obstructive sleep apnoea: effect on peripheral nerve function

Rainer Dziewas, Matthias Schilling, Philipp Engel, Matthias Boentert, Hyon Hor, Angelika Okegwo, Peter Lüdemann, E Bernd Ringelstein, Peter Young

Background and objective: Obstructive sleep apnoea (OSA) is suggested to be associated with peripheral nerve damage. A case–control study was conducted to provide further support to this observation. In a longitudinal intervention study, it was examined whether treatment for OSA has a possible beneficial effect on peripheral nerve function.

Methods: Participants were 23 patients with OSA and 23 controls matched for age and body mass index (BMI), all without any known cause of peripheral nerve damage. The sensory nerve action potential (SNAP) amplitudes of both sural nerves were determined. After 6 months of treatment for OSA, treatment compliance was evaluated and nerve conduction studies were repeated.

Results: Patients with OSA had significantly lower mean (standard deviation) sural SNAP amplitudes than controls (6.3 (3.5) v 11.2 (5.0), p < 0.001). Multivariate regression analysis including the variables age, BMI and Apnoea–Hypopnea Index (AHI) showed that both age (p < 0.01) and AHI (p < 0.05) were inversely related to the SNAP amplitude. On follow-up, the sural SNAP showed an increase of 2.6 mV on average (p < 0.001). Multivariate regression analysis including the variables age, BMI, AHI, pretreatment SNAP and treatment compliance identified only treatment compliance as being significantly related to the SNAP increase (p < 0.005).

Conclusion: OSA is an independent risk factor for axonal dysfunction of peripheral sensory nerves. Impaired neural function is at least partly reversible with treatment for sleep apnoea.
Treatment and follow-up examination

Eighteen patients with OSA were treated with nasal continuous airway pressure (nCPAP). Five patients were diagnosed with positional OSA and received treatment with a backpack for preventing them from sleeping in the supine position. After 6 months, a second nerve conduction study was performed. Data on treatment compliance were provided by the nCPAP devices (percentage of days used and hours per night used). Patients receiving positional treatment had been asked to record their daily usage during the study time.

Statistical analysis

For statistical analysis, STATISTICA for Windows version 4 was used. Univariate comparisons were carried out with the t test for paired and unpaired data, as appropriate. Multivariate regression analysis was performed to identify variables correlated with the pretreatment SNAP amplitude and to assess parameters associated with an increase in the SNAP amplitude on follow-up.

RESULTS

Patients with OSA and controls were well matched for age. Patients were more obese than controls, although this difference did not reach significance. As expected, patients had on average a more than tenfold higher AHI than controls. A similar difference was found for CT90. As expected, we found a highly significant correlation of AHI and CT90 across all participants (Spearman’s R = 0.96, p < 0.001). Nerve conduction studies showed a significant difference in the mean sural SNAP amplitudes between both groups, with patients with OSA having significantly lower amplitudes than controls (table 1).

Multivariate regression analysis taking into account all 46 participants and including the variables age, BMI and AHI showed that both age (p < 0.01) and AHI (p < 0.05) were inversely related to the SNAP amplitude (table 2A).

In all patients with OSA, treatment led to a normalisation of the AHI. With a relative usage of nearly 83% of all nights, treatment compliance was generally good. However, there was a high interindividual variability as shown by a range of 10–100%. Although 14 patients used the device more than 90% of all nights, 9 patients had a usage below 90% and 5 of these showed a poor compliance of below 70%.

Patients with OSA with good and moderate or bad compliance did not differ with regard to basic epidemiological and sleep parameters (table 3). Overall, on follow-up, the sural SNAP showed on average an increase of 2.6 μV, which was highly significant (table 3). This effect was mainly due to the SNAP increase found in the high-compliance group, whereas patients with a moderate or poor compliance showed only a minimal improvement in SNAP amplitudes. In line with univariate statistics, multivariate regression analysis including the variables age, BMI, AHI, pre-treatment SNAP and treatment compliance identified only treatment compliance as being significantly related to the SNAP increase (table 2B).

DISCUSSION

With the first part of our study, we confirmed our previous results. Thus, in patients with OSA, the sural SNAP amplitude was nearly 5 μV less than that in controls, a difference that was also found in the previous investigation. Multivariate regression analysis including all participants further showed that the amplitude of the sural SNAP was inversely related to the AHI and to age. Therefore, apart from increasing age, which has long been known to be associated with peripheral nerve dysfunction, sleep apnoea may constitute an additional independent risk factor for predominantly axonal sensory nerve damage. As, in the same analysis, the BMI showed no correlation with the sural SNAP, the difference between patients with OSA and controls is not attributable to an increased subcutaneous fat in the OSA group. As a limitation to these findings, we have to admit that other conditions associated with peripheral nerve damage, such as peripheral vascular disease, impaired thyroid function and decreased

Table 1 Characteristics of controls and patients with obstructive sleep apnoea

<table>
<thead>
<tr>
<th></th>
<th>Controls n = 23</th>
<th>With OSA n = 23</th>
<th>t Value</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>51.1 (12.2)</td>
<td>54.8 (11.1)</td>
<td>−1.07</td>
<td>0.29</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.8 (5.0)</td>
<td>31.6 (4.9)</td>
<td>−1.87</td>
<td>0.067</td>
</tr>
<tr>
<td>AHI</td>
<td>2.7 (2.4)</td>
<td>34.7 (23.2)</td>
<td>−9.58</td>
<td><0.001</td>
</tr>
<tr>
<td>CT90</td>
<td>2.9 (2.5)</td>
<td>27.9 (12.2)</td>
<td>−9.63</td>
<td><0.001</td>
</tr>
<tr>
<td>SNAP (μV)</td>
<td>11.2 (5.0)</td>
<td>6.3 (3.5)</td>
<td>3.87</td>
<td><0.001</td>
</tr>
<tr>
<td>AHI₉₀</td>
<td>NA</td>
<td>3.7 (2.4)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CT₉₀</td>
<td>NA</td>
<td>2.0 (1.3)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Compl (%)</td>
<td>82.9 (23.7)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

AHI, Apnoea-Hypopnoea Index; AHI₉₀, AHI with sleep apnoea therapy; BMI, body mass index; Compl, treatment compliance; CT₉₀, percentage of night time with oxygen saturation below 90%; CT90, with sleep apnoea therapy; NA, not applicable; SNAP, sensory nerve action potential.

*Values are mean (SD).

Table 2 Results of multivariate regression analysis

<table>
<thead>
<tr>
<th></th>
<th>β</th>
<th>SE of β</th>
<th>t Value</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Parameters correlating with the initial sural SNAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>−0.15</td>
<td>0.15</td>
<td>−2.19</td>
<td>0.034</td>
</tr>
<tr>
<td>AHI</td>
<td>−0.33</td>
<td>0.13</td>
<td>−3.46</td>
<td>0.001</td>
</tr>
<tr>
<td>Age</td>
<td>−0.44</td>
<td>0.13</td>
<td>−3.46</td>
<td>0.001</td>
</tr>
<tr>
<td>B. Parameters correlating with the difference between the second and the first sural SNAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>0.09</td>
<td>0.25</td>
<td>0.13</td>
<td>0.72</td>
</tr>
<tr>
<td>AHI</td>
<td>−0.37</td>
<td>0.20</td>
<td>0.37</td>
<td>0.085</td>
</tr>
<tr>
<td>Age</td>
<td>−0.43</td>
<td>0.24</td>
<td>−1.83</td>
<td>0.087</td>
</tr>
<tr>
<td>SNAP</td>
<td>0.25</td>
<td>0.18</td>
<td>−1.82</td>
<td>0.17</td>
</tr>
</tbody>
</table>

AHI, Apnoea-Hypopnoea Index; β, partial correlation coefficient; BMI, body mass index; Compl, treatment compliance; SNAP, pretreatment sensory nerve action potential.

Table 3 Comparison of patients with obstructive sleep apnoea with good (>90%) and moderate to bad compliance (<90%)

<table>
<thead>
<tr>
<th></th>
<th>Usage >90%</th>
<th>Usage <90%</th>
<th>All patients</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>53.9 (12.9)</td>
<td>56.3 (9.7)</td>
<td>54.8 (11.1)</td>
<td>NS</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>32.4 (5.5)</td>
<td>30.3 (3.8)</td>
<td>31.6 (4.9)</td>
<td>NS</td>
</tr>
<tr>
<td>AHI</td>
<td>35.4 (23.3)</td>
<td>33.6 (24.3)</td>
<td>34.7 (23.2)</td>
<td>NS</td>
</tr>
<tr>
<td>AHI₉₀</td>
<td>3.2 (2.5)</td>
<td>4.4 (2.2)</td>
<td>3.7 (2.4)</td>
<td>NS</td>
</tr>
<tr>
<td>Usage (%)</td>
<td>95.8 (3.6)</td>
<td>62.7 (27.8)</td>
<td>82.9 (23.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>SNAP (μV)</td>
<td>9.9 (6.4)</td>
<td>7.2 (3.0)</td>
<td>8.9 (5.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Pretreatment</td>
<td>5.9 (4.1)</td>
<td>6.8 (2.7)</td>
<td>6.3 (3.6)</td>
<td>NS</td>
</tr>
<tr>
<td>Post-treatment</td>
<td>9.9 (6.4)</td>
<td>7.2 (3.0)</td>
<td>8.9 (5.2)</td>
<td>NS</td>
</tr>
<tr>
<td>Difference</td>
<td>4.0 (3.0)</td>
<td>0.4 (1.5)</td>
<td>2.6 (3.1)</td>
<td><0.01</td>
</tr>
<tr>
<td>Paired</td>
<td>p < 0.001</td>
<td>NS</td>
<td>p < 0.001</td>
<td>NS</td>
</tr>
</tbody>
</table>

AHI, Apnoea-Hypopnoea Index; AHI₉₀, AHI with sleep apnoea therapy; BMI, Body Mass Index; SNAP, sensory nerve action potential.

Paired comparison refers to a comparison of pretreatment and post-treatment SNAP amplitudes within each compliance group.

Values in parentheses are SD.
levels of vitamin B₁₂, and folic acid, have not been systematically studied here and may therefore bias our results.

The second part of our study further corroborated the previous results by finding a considerable increase in the sural SNAP amplitude 6 months after initiation of OSA treatment. As shown by multivariate regression analysis, treatment compliance was the only variable significantly associated with improved neural function. We may therefore assume that neural dysfunction is at least partly reversible with treatment in patients with OSA. Interestingly, the extent of pre-existing nerve damage had no effect on the subsequent treatment effect, suggesting that despite exposure to intermittent hypoxaemia possibly lasting several years, pathophysiological changes are partly functional rather than structural.

To the best of our knowledge, only one study has examined the effect of nCPAP treatment on peripheral nerve function in a small collection of patients with OSA. Mayer et al.10 used the resistance to ischaemic conduction failure (RICF) as a neurophysiological marker of peripheral nerve dysfunction.10 RICF is characterised by abnormal persisting nerve conduction during ischaemia and is one of the earliest abnormalities of peripheral nerve function in various metabolic conditions such as diabetes, chronic hypoxia and chronic renal failure.1217 The authors found RICF in 7 of 17 patients with OSA and in none of the controls. After 2 months of nCPAP treatment, four patients with OSA with RICF were re-evaluated. In all of them this neurophysiological abnormality had disappeared, whereas preischaemic nerve conduction parameters were unchanged and suggested persisting axonal dysfunction.

CONCLUSION
Just like chronic hypoxaemia caused by chronic obstructive pulmonary disease, recurrent intermittent hypoxaemia may be an independent risk factor for peripheral sensory nerve dysfunction. Secondly, comparable to the effect observed in other OSA-related disorders such as hypertension, thrombophilia18 and cardiac rhythm disturbances,7 treatment for OSA might also result in improved function of peripheral nerves.

Authors’ affiliations
Rainer Dziewas, Matthias Schilling, Philipp Engel, Matthias Boentert, Hyon Hor, Angelika Okegowo, Peter Lüdemann, E Bernd Ringelstein, Peter Young, Department of Neurology, University Hospital of Münster, Münster, Germany

Funding: This study was supported by Innovative Medizinische Forschung (IMF DZ 120140).

Competing interests: None declared.

REFERENCES
Treatment for obstructive sleep apnoea: effect on peripheral nerve function

Rainer Dziewas, Matthias Schilling, Philipp Engel, Matthias Boentert, Hyon Hor, Angelika Okegwo, Peter Lüdemann, E Bernd Ringelstein and Peter Young

J Neurol Neurosurg Psychiatry 2007 78: 295-297 originally published online September 29, 2006
doi: 10.1136/jnnp.2006.102806

Updated information and services can be found at:
http://jnnp.bmj.com/content/78/3/295

These include:

References
This article cites 15 articles, 7 of which you can access for free at:
http://jnnp.bmj.com/content/78/3/295#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Sleep disorders (neurology) (151)
Editor's choice (136)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/