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Large scale brain models of epilepsy: dynamics
meets connectomics

Mark P Richardson

ABSTRACT
The brain is in a constant state of dynamic change, for
example switching between cognitive and behavioural
tasks, and between wakefulness and sleep. The brains of
people with epilepsy have additional features to their
dynamic repertoire, particularly the paroxysmal occurrence
of seizures. Substantial effort over decades has produced
a detailed description of many human epilepsies and of
specific seizure types; in some instances there are known
causes, sometimes highly specific such as single gene
mutations, but the mechanisms of seizure onset and
termination are not known. A large number of in vivo
animal models and in vitro models based on animal tissues
can generate seizures and seizure-like phenomena.
Although in some instances there is much known about
the mechanism of seizure onset and termination, across
the range of models there is a bewildering range of
mechanisms. There is a pressing need to bridge the gap
between microscale mechanisms in experimental models
and mechanisms of human epilepsies. Computational
models of epilepsy have advanced rapidly, allowing
dynamic mechanisms to be revealed in a computer model
that can then be tested in biological systems. These
models are typically simplified, leaving a need to scale up
these models to the large scale brain networks in which
seizures become manifest. The emerging science of
connectomics provides an approach to understanding the
large scale brain networks in which normal and abnormal
brain functions operate. The stage is now set to couple
dynamics with connectomics, to reveal the abnormal
dynamics of brain networks which allow seizures to occur.

It seems likely that our current understanding of
epilepsy will radically change in the next decade.
Conventional clinical concepts in epilepsy are still
founded on a scheme developed 30 years ago.1 2

Seizure types were assigned to two major cate-
gories: focal or generalised. Despite the clarity of
this classification, even in the original description
its unsatisfactory nature was recognised by the
additional category of ‘unclassifiable’ seizures.
Likewise, the disorders causing epilepsy were clas-
sified into presumed localised brain disturbances
and those with a presumed generalised disturbance;
nonetheless, some epilepsies defied this dichotomy
and were labelled ‘unclassifiable’. Given ever
expanding knowledge about epilepsy, the need to
re-examine these approaches to classification has
been clear for several years. In particular, the iden-
tification of widespread and often bilateral
phenomena in supposedly focal epilepsies3 4 and
the finding of focal features in supposedly general-
ised epilepsy syndromesdbest exemplified by the

finding of a localised cortical focus which drives
absence seizures in a rat model5e7dsuggest that
even the focal/generalised dichotomy is not
clearcut. Unfortunately, the wide range of gene
mutations coupled with the vast array of experi-
mental manipulations that can give rise to seizures
results in a bewildering picture: unifying epilepsy
mechanisms do not seem to have emerged yet. In
this context, a new proposal for a classification of
the epilepsies8 has not developed easily.
The difficulty reaching a new approach to

epilepsy classification stems from the paucity of
data to link clinical phenomenology with under-
lying mechanisms. The science which could join
together microscale mechanisms with clinical
phenomenology (systems neuroscience) has not yet
emerged as the leading explanatory paradigm in
epilepsy. The purpose of this review is to introduce
concepts from systems neuroscience, in particular
to show how description and dynamic modelling of
brain networks will be an especially fruitful
approach. Three key points should be emphasised:
< Seizures emerge rapidly from normal brain states

and usually self-terminate; the time scale of
onset and offset of a seizure is orders of
magnitude faster than any possible change in
the numbers of neurons, axons, dendrites or
synapses, and many other neuronal mecha-
nisms. Therefore, the neuronal machinery
causing seizures is the same machinery present
in the brain interictally during normal function.
This suggests that epilepsy is a problem
emerging from dynamic properties of the brain.

< The clinical expression of seizures necessarily
requires the involvement of large scale brain
networks to create behavioural output and/or to
allow subjective experience of the seizure;
without behavioural or subjective features,
there is no epilepsy. A very wide range of
mechanisms gives rise to a relatively small
range of seizure types; and patients who appear
to have seizure onset from different brain regions
can produce seizures that appear identical. These
observations suggest that although there may
be many different microscale mechanisms of
seizure onset, common pathways of seizure
evolution and expression at the large scale
emerge from these divergent microscale mecha-
nisms; these common pathways necessarily
involve large-scale brain networks.

< The concept of a ‘seizure focus’ is much less
clearcut than it might seem; it is much more
likely that ‘focal’ seizures arise from a network,
and that in some cases removal of a crucial
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network node (the ‘seizure onset zone’) will stop seizures. Even
in operated epilepsy surgery cases, the correlation between
removal of the ‘seizure onset zone’ and epilepsy cure is not
simple: in a large recent study,9 22% of patients considered to
have good postsurgical outcomes were in fact continuing to
have simple partial seizures despite removal of the ‘seizure
onset zone’; 31% of all operated patients had a complex
pattern of remission and relapse; and 5% of all operated
patients had a remission or relapse directly related to a drug
change following surgery.9 These observations strongly suggest
that in many patients (maybe all) there is no single focal region
which drives seizure onset, but rather a complex network, the
dynamics of which can be helpfully altered in many cases
through epilepsy surgery, targeting a specific network node,
which currently is termed the seizure onset zone.
Therefore, the underlying thesis of this contribution is that

describing and understanding the dynamic mechanisms oper-
ating in large scale human brain networks is likely to produce
key insights into human epilepsy, and new approaches to
treatment.

NEUROIMAGING EVIDENCE FOR BRAIN NETWORKS
UNDERLYING EPILEPSY
EEG evidence supporting large scale brain network involvement
in focal seizures has been described previously,3 although some
controversy was generated.10 Intracranial EEG evidence suggests
that in some instances, in the same patient, different seizures
might start in different anatomical regions, but rapidly engage
the same network, giving rise to identical seizures; conversely, in
some instances, seizures with onset in the same region may
engage different networks in different seizures, producing
seizures with different semiological manifestations.3 Intracranial
EEG necessarily has very limited coverage of different brain
areas, and would not typically record from certain structures

(eg, the thalamus) and so can provide only limited data on large
scale brain networks in epilepsy. Neuroimaging in epilepsy
provides very substantial evidence for the involvement of
a widespread set of specific brain regions in specific epilepsy
syndromes and seizure types.4

Neuroimaging reveals brain network abnormalities in mTLE
Mesial temporal lobe epilepsy (mTLE) is the best studied focal
onset epilepsy (see figure 1). Structural MRI shows atrophy of
the anterior hippocampus in addition to other mesial temporal
lobe regions (entorhinal cortex, perirhinal cortex, piriform
cortex, amygdala), and also consistently loss of grey matter is
seen in the striatum, frontal and parietal neocortex and bilateral
thalamus.11e17 These abnormalities tend to be more pronounced
after a longer duration of epilepsy, or in those with generalised
seizures, suggesting a mechanism related to chronic unremitting
seizures. Using diffusion tensor imaging (DTI), which captures
the direction and integrity of white matter tracts, the tracts
between some of these regions have been found to be abnormal,
particularly within the limbic system and transcallosal white
matter.18e20 These structural abnormalities have parallels in
functional abnormality. 18Fluorodeoxyglucose-positron emission
tomography typically identifies interictal regions of reduced
glucose metabolism in the mesial temporal lobe and adjacent
neocortex21 22 and also in the insular cortex, putamen and
thalamus.23e25 Ictal single photon emission computed tomog-
raphy in mTLE often shows not only hyperperfusion during
seizures in the temporal lobe but also hyperperfusion in the
thalamus, striatum and insula, usually ipsilateral, and correlated
with ictal dystonia of the contralateral upper limb.26e30 In
simple partial seizures, there may be no widespread cortical
perfusion changes but during complex partial seizures, there is
increasing involvement of the bilateral thalamus as the seizure
progresses.31 Loss of consciousness in mesial temporal lobe

Figure 1 A schematic summary of
the brain network abnormalities seen in
neuroimaging studies of patients with
mesial temporal lobe epilepsy. This
summary is based on substantial
evidence. (A) Coronal section; (B)
medial view of the ipsilateral right
hemisphere; (C) axial section; (D)
lateral view of the ipsilateral right
hemisphere. Neuroimaging evidence
suggests a wide range of structural and
functional network abnormalities. There
is grey matter atrophy in the ipsilateral
mesial temporal lobe (8), ipsilateral
lateral temporal neocortex (14),
ipsilateral parietal neocortex (13),
bilateral thalamus (6) and bilateral
cingulate gyrus (1). There is loss of
white matter connectivity in the
ipsilateral cingulum bundle (2),
ipsilateral external capsule (5),
ipsilateral inferior longitudinal fasciculus
(9), bilateral uncinate fasciculus (10)
and anterior corpus callosum (3).
During seizures captured with ictal
single photon emission computed
tomography (SPECT), increased
perfusion is seen in the ipsilateral
mesial temporal lobe (8), lateral temporal lobe (14), striatum (7) and bilateral thalamus (6). Decreased perfusion during ictal SPECT is seen in the lateral
frontal cortex (15), mesial frontal cortex (4) and precuneus (11).
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seizures has been linked with hyperperfusion in the mediodorsal
thalamus and hypoperfusion in the frontal association
cortices.31 Secondary generalisation may involve widespread
contralateral hypoperfusion.32

Interictal epileptiform discharges (IEDs) are a characteristic
feature of epilepsy, and may be captured during functional MRI
(fMRI) studies with simultaneous scalp EEG; focal IEDs typi-
cally reveal focal blood flow change, coupled with a network of
haemodynamic changes in other brain regions,33e35 including
thalamic activation during focal discharges.36 Averaging across
a group of subjects with mTLE, simultaneous EEGefMRI
showed activation correlated with IEDs in the mesial temporal
lobe, insula and putamen, with deactivation in the posterior
cingulate.37

Therefore, in mTLE, which may be regarded as an ‘archetypal’
focal epilepsy, there is a specific large scale brain network
implicated interictally, which appears to be directly involved in
generating the seizure; moreover, the pattern of network
involvement correlates with the clinical pattern of the seizure.
These brain networks prominently involve the thalamus and
striatum as well as the mesial temporal and cortical regions.

Neuroimaging reveals brain network abnormalities in IGE
Idiopathic generalised epilepsies (IGE) are similarly ‘archetypal’
generalised epilepsies. Neuroimaging evidence suggests that
a specific localised network is implicated in these epilepsies,
rather than a generalised effect (see figure 2). Despite conven-
tional wisdom that imaging is normal in IGE, structural
abnormalities of the thalamus and frontal cortex have been
found, although the nature of the abnormality has been variable:
volume has been found increased38 or decreased39 40 in IGE with
absences; in juvenile myoclonic epilepsy (JME) there may be

thalamic atrophy41 42 and also abnormality of thalamic shape43;
in IGE with generalised toniceclonic seizures only, bilateral
thalamic atrophy has been found.44 Frontal lobe cortical volume
changes in JME have been found in several studies, but incon-
sistently: increased grey matter in mesial frontal regions42 45 or
frontobasal regions,46 or decreased grey matter in mesial frontal
regions47 or no change.48 Loss of transcallosal white matter
connectivity has also been found using DTI,47 as well as
increased structural and functional connectivity with motor and
premotor regions.49 50 In IGE with generalised toniceclonic
seizures only, bilateral cortical atrophy in frontocentral areas has
been found.44 Bilateral putamen atrophy has been found in
IGE.51

Simultaneous EEGefMRI in patients with generalised spike
wave discharges has revealed a pattern of thalamic activation
and cortical deactivation,52 53 particularly posterior cingulate
deactivation.54 Involvement of the caudate may also be seen.53

In both focal epilepsy and IGE, the so-called ‘default mode
network’ (of which more below) is typically deactivated during
discharges.34 35 55e57

Although the structural imaging evidence is less clearcut than
in mTLE, evidence again points to the involvement of a specific
cortico-striato-thalamic network in IGE.

Resting state fMRI reveals functional networks in the normal
brain
So-called resting state fMRI is a major contributor to the new
science of brain networks. fMRI has typically been used to
detect blood oxygen level dependent (BOLD) signal change,
reflecting localised blood flow changes, occurring during partic-
ular task conditions in behavioural fMRI studies. Increasingly,
fMRI is being used in a task free ‘resting state’, with the aim of

Figure 2 A schematic summary of
the brain network abnormalities seen in
neuroimaging studies of patients with
juvenile myoclonic epilepsy. This
summary is based on considerably less
evidence than available to construct
figure 1 regarding mesial temporal lobe
epilepsy. (A) Coronal section; (B)
medial view of the left hemisphere; (C)
axial section; (D) lateral view of the left
hemisphere. Neuroimaging evidence
again suggests a wide range of
structural and functional network
abnormalities. There is grey matter
atrophy in the bilateral medial frontal
cortex (1), bilateral medial parietal
cortex (7) and bilateral striatum (4).
There is loss of white matter
connectivity in the anterior (3) and
posterior (9) corpus callosum. The left
hemisphere shows loss of connectivity
between the anterior supplementary
motor area (SMA) and anterior medial
frontal cortex (13), loss of connectivity
between the posterior SMA and
primary motor cortex (12), gain of
connectivity between the anterior SMA
and primary motor cortex (6), gain of
connectivity in the pyramidal tract (2) and gain of connectivity between the posterior SMA and occipital (10) and temporal (11) cortices; these findings
have only been explored in the left hemisphere and it is not known if these abnormalities may be bilateral. During generalised EEG spike wave
discharges captured during simultaneous EEGefunctional MRI (fMRI), increased activity is seen in the bilateral thalamus (5), and decreased activity is
seen in a number of regions, including the precuneus (7), medial frontal cortex (8), lateral parietal cortex (15) and lateral frontal cortex (14). BOLD,
blood oxygen level dependent.

C

A

11

55

44

2 3

D

14

11

10

B

1

6

3

9
10 11

12

13

Reduced 

structural 

connectivity

Increased 

structural 

connectivity

Grey matter 

volume loss

Volume loss and 

EEG-fMRI ictal 

increased BOLD

EEG-fMRI ictal 

decreased BOLD

Volume loss and 

EEG-fMRI ictal 

decreased BOLD

Epilepsy

1240 J Neurol Neurosurg Psychiatry 2012;83:1238–1248. doi:10.1136/jnnp-2011-301944

 on A
pril 18, 2024 by guest. P

rotected by copyright.
http://jnnp.bm

j.com
/

J N
eurol N

eurosurg P
sychiatry: first published as 10.1136/jnnp-2011-301944 on 23 A

ugust 2012. D
ow

nloaded from
 

http://jnnp.bmj.com/


detecting brain regions which show spontaneous correlated
activities, based on the assumption that functionally connected
brain networks will show similar profiles of activity over time;
a particularly fruitful approach has been to use independent
components analysis to detect brain regions which share vari-
ance (ie, networks with similar profiles of activity over time).
Typically, in adults, this approach reveals a small set of typical
brain networks active during a task free ‘resting’ state, consisting
of brain networks involved in motor function, visual processing,
attention, auditory processing, memory and the so-called default
mode network. The default mode network had previously been
identified in task related fMRI as a set of brain regions active
when tasks were not being performed.58 These networks are
highly reproducible but differ with ageing and between
genders.59 The set of spontaneously active networks seen in the
‘resting’ state corresponds extremely well to the networks
revealed in a very large number of task related behavioural fMRI
studies,60 suggesting that the apparently spontaneous brain
activity reflects continuous operation of segregated brain
networks responsible for various classes of sensory and behav-
ioural tasks. Concurrent resting state fMRI and microelectrode
recording in monkeys show a correlation between the slow
fluctuations in BOLD (w0.1 Hz) and slow fluctuations in
neuronal firing rates and gamma band local field potentials,61

suggesting that resting state fMRI is related to physiologically
relevant underlying neuronal processes.

Resting state fMRI functional networks are abnormal in epilepsy
In mTLE, functional connectivity in fMRI resting state
networks seems to be abnormal, even in the interictal state.
Decreased resting fMRI functional connectivity was found
between mesial temporal lobe subregions in the ipsilateral mesial
temporal lobe; relatively increased connectivity was seen in the
contralateral mesial temporal lobe.62 Decreased functional
connectivity was seen in the auditory and sensorimotor resting
state networks whereas increased functional connectivity was
seen in primary visual regions63 and decreased connectivity with
dorsal attention network.64 In particular, there may be reduced
functional connectivity between the default mode network and
the mesial temporal region.65 66 In IGE, functional connectivity
within fMRI resting state networks also seems to be abnormal.
Most resting state networks show reduced connectivity
compared with normals.67e69 One resting state network,
involving motor regions and basal ganglia, showed increased
functional connectivity compared with normals, and connec-
tivity with caudate nuclei particularly increased during gener-
alised spike wave discharges. Increased functional connectivity
has been noted between the frontal lobes in absence epilepsy70;
interestingly, in a rat model of absence, DTI shows reduced
connectivity across the anterior corpus callosum,71 and an
identical finding has been made in human JME.72 Reconciling
these differences in functional versus structural connectivity
is difficult, but in a different disease, amyotrophic lateral scle-
rosis, increased functional connectivity between hemispheres
correlated with reduced structural connectivity.73

MODELS OF THE BRAIN: EXPLANATORY AND PREDICTIVE
POWER
The observations described above imply the involvement of large
scale brain networks in epilepsy but do not provide any evidence
of mechanisms; hypotheses arising from these observations need
to be tested in models. An especially promising avenue is to use
increasingly sophisticated computational brain models. A model
is a way of structuring knowledge in order to provide a level of

explanation that is not evident by simply examining data, and in
order to create novel predictions that can then be tested
empirically by new data collection. The necessity for computa-
tional modelling is that the brain is an exceptionally complex
dynamic system. Generally, dynamic models attempt to isolate
and simplify a system of the brain, aiming to explain dynamic
mechanisms at a particular spatial and temporal scale. Static
models aim to describe the structures and networks of the brain
in which these dynamic processes operate; typically such models
aim to localise brain functions and to identify and quantify
connections between brain components. Static models of brain
structures and their connections are typically used as the foun-
dation of dynamic models. In particular, computational models
enable observations made at one scale (eg, neuronal properties)
to be explored at a different scale where observation would be
difficult (eg, network behaviour of large numbers of connected
neurons). Crucial to all approaches to modelling is the collection
of high quality relevant data in experimental systems, on which
computational models can be based, and in which hypotheses
emerging from models can be tested.
Models of the brain inevitably are gross simplifications; if all

of the details were known to construct a perfectly detailed
model, then a model would not be necessary because the details
would already be known. Fundamental decisions prior to
constructing models include: considering the scale (eg, neurons
versus whole brain networks); whether to include large numbers
of parameters related to ionic conductances, cell types, etc, or to
‘lump’many parameters together; and at what temporal scale to
model (anywhere from the millisecond scale of action potentials
up to years for seizure occurrence models).
Models of brain connections may examine anatomical

connectivity (structural connections between brain regions),
functional connectivity (correlations between measures from
different brain regions which do not necessarily imply causa-
tion) and effective connectivity (directed effects of one region on
another, which do imply causation)74; effective connectivity
(such as dynamic causal modelling in fMRI) is an example of
a dynamic model being explicitly based on a static model of
brain connections. Bringing our understanding of epilepsy into
the framework of brain networks is especially timely, given the
current emergence of a new science of brain networks
(‘connectomics’).75 It seems likely that the dynamic network
nature of epilepsy is particularly well suited to exploration
through a modelling approach that combines dynamic
modelling and connectomics.
However, all models have limitations, and theoretical models

are no exception. A model is only useful if its predictions are
shown in real biological data to be correct. The aim of all
modelling studies, whether experimental or theoretical model-
ling, is to explain underlying mechanisms and to suggest
possible therapeutic modalities. It is not sufficient for a theo-
retical model simply to reproduce observed physiologydit must
be able to inspire novel predictions and hypotheses which can
then be tested in living systems. As with experimental models,
a crucial limitation of theoretical models is uncertainty about
their biological relevance, especially for human epilepsies (bio-
logical relevance might be regarded as ‘model validity’ although
this is a difficult idea to define). It could be argued that it is
extremely difficult to construct a theoretical brain model of
seizure generation because so many parameters related to
normal and pathophysiological mechanisms are unknown or
difficult to measure, hence any theoretical model is bound to be
inaccurate, incomplete and to contain incorrect assumptions. As
a result, irrelevant mechanisms might be inferred from studying
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the model; conversely, physiologically important mechanisms
might not be revealed. It is important to point out, however,
that all of these criticisms apply equally to even relatively well
understood experimental models of epilepsy.

Even if the particular theoretical model is able to provide
testable predictions (regarding mechanisms, or diagnosis, prog-
nosis and treatment response) the complexity of the theoretical
model may be sufficiently challenging that the particular
mechanisms producing the useful (predictive) model output
may be difficult to understand. Nonetheless, theoretical models
are often amendable to detailed exploration, which may reveal
useful insights.

A substantial book summarising computational modelling
approaches in epilepsy will provide the reader with a compre-
hensive account of this field76; brief accessible reviews provide
helpful summaries.77e79

MODELLING THE DYNAMICS OF EPILEPSY
Theoretical models relevant to epilepsy often can generate
a synthetic time series, which is created from a set of explicit
equations governed by parameters that can be varied; such
a model may be used to simulate the generation of EEG, for
example. Models may be created to examine different spatial
scales of a system (such as single channels or receptors, single
neurons, neuronal networks or larger scale models of interac-
tions between brain regions) and over a range of time scalesd
from milliseconds, relevant to neuronal networks, to years,
relevant to patterns of occurrence of seizures and remission.
Parameters of the equations governing these models reflect
movements of ions through channels, action potential firing,
synaptic phenomena and conduction delays between different
regions; the model is often formulated as a set of differential
equations coupled with time delays. Ideally, the parameters
should be based on experimental data relevant to the epilepsy
being modelled. Broadly, models may be very detailed, incorpo-
rating multiple neurons each with multiple ion conductances,
synapses and connections to other neurons80e83 or, alternatively,
models may assume that populations of neurons behave simi-
larly, and hence many parameters can be lumped together.84e88

Detailed models can often be used to simulate EEG, and the
ability to capture essential EEG phenomena (eg, detailed
patterns of seizure onset and offset similar to real data) may be
seen as evidence that aspects of the model are correct; ‘lumped’
models can often be explored in much more detail, especially
to examine the full range of behaviours the model can
generate with fixed parameters and the consequences of altering
parameters of the system.

Such an approach can motivate specific hypotheses regarding
the dynamics of the change in brain state that causes seizure
onset. An analogy might be to imagine the patterns of a horse’s
locomotion when moving at different speeds. If a single
parameter is gradually varied (speed), the horse will show
a walking pattern at lowest speeds, trotting at slightly faster
speeds, then as speed continues to increase will switch to canter
and then gallop at the fastest speeds. These are qualitative and
abrupt changes in the pattern of locomotion dependent on
a control parameter (speed). At certain speeds, the horse might
be able to switch between patterns of locomotion (for example,
‘trot’ and ‘walk’ might both be possible at a certain speed)dthis
would be an example of a bistable system, in which two states
are possible without a change in parameters. In an analogous
sense, there may be hidden subtleties in the way seizures could
start, which exploration of the dynamics would reveal. It is
possible that seizure onset is driven entirely by a change in

a control parameter, which creates a change in dynamics from
‘normal state’ to ‘seizure’; a second possibility is that a change in
a control parameter moves the brain from a normal state to
a bistable state, in which both normal and seizure states can
exist without any parameter change; a third possibility is that
the brain exists constantly in a bistable state89; parameter
changes and switching between the two states might be driven
by external or endogenous factors, such as changes in the
sleepewake cycle or external sensory stimulation, such as photic
stimulation.
Childhood absence epilepsy and TLE have been the subject of

many modelling studies, largely because experimental animal
systems provide much evidence to define model parameters,78

particularly the thalamocortical network which gives rise to
3 Hz spike wave discharges90e93 and the medial temporal
structures associated with seizure onset in experimental animals
with TLE. However, in TLE, it is not explained how activity
apparently emerging in the mesial temporal lobe engages other
brain regions to cause a clinically symptomatic seizure, although
there is some evidence that normal sleep related phenomena
coupling the hippocampus with the neocortex may be taken
over by the abnormal synchronous discharges of temporal lobe
seizures.94

Detailed computational models of generalised spike wave
discharges include influential studies,82 95 suggesting the mech-
anism of initiation is in thalamocortical cells, although this may
not fit more recent experimental evidence suggesting in a rodent
experimental model that initiation is in the cortex.5 A ‘lumped’
model, incorporating three homogenous cell populations
(thalamocortical neurons, thalamic reticular neurons and cortex)
based on known connections between the thalamus and
cortex96 was able to generate spike wave discharges following
a change in system parameters,97 suggesting that an underlying
slow change in brain state was required for seizure initiation.
This is in contrast with an alternative model which suggests
that in absence epilepsy, the brain exists in a bistable state, able
to generate both normal activity and seizure discharges without
any underlying change in parameters.98 Although it might
appear that these are mutually exclusive explanations for seizure
onset, our modelling work showed that both possible mecha-
nisms for transition to seizure could exist in the same model.99

Although such models might seem arcane, understanding the
mechanisms of transition to seizure is crucial: a treatment
which prevents one route to seizure initiation might not prevent
a different pathway to seizure initiation. Patients with epilepsies
which seem identical might have different underlying dynamic
mechanisms99 and hence require different treatment.
We have explored in detail a lumped model of corticothalamic

interactions100 (see figure 3) and shown that in the model more
than one mechanism of dynamic transition to seizures is
possible: it may occur through a change in system parameters, or
emerge from a bistable state.99 Subsequently, we showed that
such a model could generate the range of spike wave shapes
(including polyspike waves) often seen even in the same gener-
alised spike wave discharge.101 Subsequently, we devised
a method to fit the model to real EEG data, which provides
a new opportunity to understand how system parameters
change before, during and at the termination of a real seizure in
a person with epilepsy.102 We showed that different seizures
from the same subject tended to show very similar parameter
evolution at the onset, during and at the termination of the
seizure, and that these changes differed between subjectsdthis
has the potential to classify epilepsies based on underlying
mechanisms and to identify parameters that indicate treatment
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responsiveness. We have recently developed a novel approach to
fit a model of temporal lobe seizures to intracranial EEG derived
from patients with mTLE,103 thus allowing both IGE and focal
epilepsies to be explored in similar ways.

GRAPH THEORY: EMERGING TECHNIQUE TO UNDERSTAND
BRAIN NETWORKS
Graph theory is a well established method for describing the
global and local properties of networks, which has recently
become a leading approach to investigating the brain,104 105

aided by a widely used suite of analysis tools, the Brain
Connectivity Toolbox.106 A network consists of nodes (often
termed vertices) which interact via connections (termed edges).
In the case of the brain, networks can be constructed based on
structural connections or functional connections. Brain
networks may be examined at many spatial scales: nodes may be
single neurons or brain regions; structural connections may be
individual axons and synapses or larger scale white matter
tracts; functional connections can be examined in terms of
a multitude of interdependencies between electrical phenomena
measured in different regions. Because it is based on the study of
multiple interactions between many brain regions, graph theory
has the potential to provide entirely novel information about
brain function and dysfunction. A key concept in graph theory is
the idea of ‘small world’, in which certain patterns of network
allow any node of a network to be reached from any other node
via a path which traverses very few edges and nodes but at the
same time local connections between neighbouring nodes are
strong. This combination of highly ordered local segregation of
brain regions connected by relatively sparse long distance

connections is typical of the brain, reflecting both functional
segregation in specialised brain regions and functional integra-
tion at higher levels of brain function. Global network measures
include clustering coefficient, a measure of the tendency for the
network to form locally connected ‘cliques’; characteristic path
length, which measures how many nodes must on average be
passed through to travel from any one node to any other; and
their ratio, the Small World Index. Small world networks are
highly clustered but with short path lengths (ie, there are a small
number of long distance direct connections between local clus-
ters); randomly connected networks have short path lengths but
little clustering; whereas a regular lattice (like a fishing net) is
relatively highly clustered and has long path length (see figure 4).
Patterns of connectivity can also be examined in terms of the
modules or ‘community ’ structure of the networks.107 Local
measures of the network can identify nodes which are well
connected (have high degree) as well as characterising the role of
individual nodes in information flow in the network, through
measures which characterise the role of nodes as crucial network
hubs (such as betweeness centrality).
A rapidly expanding literature is developing in this field,

showing abnormalities of brain networks in various brain
diseases. Of particular note is that in a study of monozygotic
and dizygotic twins, network properties were shown to be
genetically determined.108

Any network consists of nodes and edges (connections),
therefore the initial challenge is to define nodes and connections
in brain networks. Here I will confine attention to methods
available for human brain studies. No ideal method exists to
define the nodes for constructing brain networks. Most studies

Figure 3 An example of how theoretical models may enable data from different scales and different species to be integrated, in order to cast light on
clinical data. (1) Experimental studies in rats with generalised spike wave discharges have allowed detailed electrophysiological data to be obtained
from brain network regions involved in generating the seizure, including the cortex, thalamic reticular nucleus and thalamic specific nucleus. These data
may be used to infer mechanisms, firing patterns and parameters of neurons and their connections which allow seizures to arise. (2) The pattern of
connectivity, and various parameters from the experimental data, are used to create a theoretical dynamic model. This particular model (see Rodrigues
and colleagues100 and Marten and colleagues101 for full details and explanation of the abbreviations) describes neuronal activity in terms of population
level activity in the relevant brain regions, coupled according to known anatomy, and governed by parameters drawn from experimental data. (3) The
model can be explored in detail, to understand its dynamics and the patterns of activity that can be generateddin this instance, a range of patterns of
spike wave and polyspike wave EEG activity closely resembling seizures. (4) In order to cast light on the mechanisms of human spike wave discharges,
real EEG data from patients can be fitted to the model, which allows specific parameters of the model to be identified which may play a role in the
generation of the ictal discharge (see Nevado-Holgado and colleagues102 for more detail).
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to date have either defined nodes anatomically using structural
MRI and one of several automated anatomical labelling soft-
ware, or have used the ‘peaks’ of brain activity in fMRI data.
Some studies have divided grey matter randomly into multiple
equal sized volumes distributed through the brain.109 EEG and
magnetoencephalographic (MEG) studies often define the
network in terms of electrodes or sensors, creating a network in
sensor space rather than in brain space. Widely used graph
theory metrics such as degree, centrality, small worldness,
clustering coefficient and characteristic path length are depen-
dent on the number of nodes and connections,110 111 so it is
crucial to define these similarly across subjects being compared.
Defining connections or edges within a brain network is

similarly challenging. Structural networks are typically modelled
using DTI data. Connections between two regions can be
quantified as the number of connections or probability of
connection using probabilistic tractography,112 or in terms
of diffusion parameters along a known connection. In groups of
subjects, pairwise correlations between thicknesses of cortex in
different brain regions may be estimated, and these pairwise
correlations between all available pairs of regions used to
create a network; such networks may be compared with
random networks or compared between groups, to detect
abnormalities.113 Functional connectivity, using data from
fMRI, EEG or MEG, may be measured using essentially any
measure of interdependence between each pair of nodes, such as
correlation, coherence and so on.

MODELLING THE NETWORKS OF EPILEPSY
A few studies have begun to apply these highly promising graph
theory methods in epilepsy, although these earliest studies are
far from reaching a consensus description of brain networks in
epilepsy.
In a study of patients with IGE and generalised toniceclonic

seizures, networks of structural (DTI) and functional (resting
fMRI) connections showed reduced small worldness and reduced
network clustering compared with normal subjects, and
abnormal hub nodes, especially in the thalamus, mesial frontal
cortex, putamen and regions of the default mode network.114

These observations suggest that global characteristics of brain
networks in IGE are abnormal, and that specific highly
connected brain regions have abnormal connectivity patterns in
IGE. Using MEG, patients with absence seizures showed
increased clustering and node strength during interictal periods,
compared with normals, in the alpha band.115 Graph theory
methods can be applied to EEG from seizures, and compared
with interictal periods. EEG networks become more lattice-like
(increased clustering and path lengths) during absence
seizures,116 suggesting that the normal patterns of connectivity
in the brain are grossly altered during a seizure.
In TLE, brain network graphs were constructed from corre-

lations between measures of cortical thickness in multiple brain
regions.117 Compared with controls, patients showed increased
path length and clustering and altered distribution of network
hubs.117 Also in TLE, networks constructed from resting fMRI
data showed increased connectivity, especially involving the
temporal lobes, and more generally reduced clustering and
shorter characteristic path lengths.118 In patients with TLE,
interictal intracranial EEG showed reduced clustering and small
worldness in patients with a longer duration of epilepsy.119

These observations suggest that global characteristics of brain
networks in TLE are abnormal and that specific highly
connected brain regions have abnormal connectivity patterns in
TLE, reflecting similar observations in IGE described above.

A

B

C

Figure 4 Graph theory enables global and local characteristics of
networks to be identified and described. In (A), a set of network nodes
(grey circles) are randomly connected (black lines). This pattern of
connectivity is highly unlike the normal brain. Graph theory analysis
shows that information could move quickly through the network from
one node to many distant nodes, because there are many long range
connections across the network. A commonly used graph theory metric
‘path length’ is used to describe how many network nodes need to be
traversed on average to travel from a particular node to any other node in
the network. A randomly connected network has many long range
connections, hence a short average path length. On the other hand, there
is very little clustering in this networkdthat is, neighbouring nodes tend
not to be connected to each other. Local information processing in
a network requires neighbouring nodes to be clustered together. In (B),
the same set of network nodes is connected using the same total
number of connections as in (A), but in this instance the connections
construct a regular lattice. In this instance, average path length is
longdto travel between any pair of nodes, typically many other nodes
would have to be traversed because there are no long range
connections. A lattice has high clustering and high path length. In (C),
a few connections between neighbouring nodes have been re-connected
to a randomly chosen node (connections indicated in red). This produces
a network with high local connectivity (highly clustered) but short path
lengthdthe small number of long range connections provides short cuts
between local clusters of nodes. This pattern is termed ‘small world
network’ and is typical of the brain and many other naturally occurring
networks.
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In patients with neocortical focal seizure onsets studied
with intracranial EEG, the seizure onset zone in the interictal
period showed decreased connectivity with surrounding brain
regions120; this is in contrast with other studies which
found increased connectivity in and around the seizure onset
zone.121 122 Ictally, there is evidence that synchronisation
around the seizure onset zone decreases prior to focal onset
seizures.123e125 Using graph theory approaches, EEG networks
become more lattice-like (increased clustering and path lengths)
during and focal onset seizures,125 126 suggesting that the normal
patterns of connectivity in the brain are grossly altered during
a seizure, as also seen in IGE.

MODELLING BRAIN DYNAMICS IN BRAIN NETWORKS BASED
ON REAL DATA
Although describing the global and local patterns of connectivity
in models of brain networks might be interesting, its relevance
to understanding the mechanisms of epilepsy is not immediately
apparent. A potentially fruitful direction will be to couple
dynamic models to network models in order to ‘bring the
network to life’ and understand how the pattern of functional
interactions determines the dynamics emerging from the
network, particularly to understand how seizures emerge from
the network. In principle, this might provide a way to under-
stand how and whether seizures can emerge as a result of
focal abnormality in a grey matter region, or as a result of an
abnormality of white matter connections, or both.

Modelling the dynamics of brain networks causing epilepsy
has been successfully undertaken at the small spatial scale.
Detailed modelling of networks of neurons, which generate
phenomena very similar to electrocorticography, has explored
how parameter changes give rise to abrupt dynamic transitions,
particularly parameter changes related to connectivity between
neurons.127 Using a detailed model of networks of neurons and
their connections, it has been found that there is a set of
conditions under which seizure-like activity emerges, dependent
on the relative proportion of long range connections between
neurons, and subsequent patterns of clustering, path length and
small worldness128; relatively small alterations in these patterns
of connectivity moved the system from ‘normal’ behaviour to
‘seizing’. Although the results emerging from these detailed
models are specific to the systems modelled, the underlying
approachdto combine explicit dynamic models with informa-
tion about network structure from real datadcan readily be
applied to large scale brain networks.

Dynamic network models have been little applied to neuro-
imaging in epilepsy. In a single mTLE case, EEGefMRI identified
BOLD signal corresponding to interictal discharges in temporal
and occipital regions. Dynamic causal modelling, which
combines a biophysical model of how BOLD fMRI signal is
generated from neuronal activity with a statistical method to
select likely connectivity patterns, revealed that the temporal
lobe region drove activity in the remote occipital region, and
using DTI a specific anatomical connection between these
regions was identified.129 A similar approach was taken to the
network of brain regions showing BOLD activity during gener-
alised spike wave discharges in IGE.130 Dynamic causal model-
ling suggested that a region of medial parietal cortex drives
generalised spike wave onset.130 This finding has parallels with
EEG and MEG source localisation techniques, which have
shown the origin of generalised spike wave in the medial cortex
although usually more anteriorly.131e133

We have recently combined brain networks derived from real
EEG data of patients with IGE and normal subjects with

a dynamic model which incorporates a bistable state (allowing
normal activity and seizure-like activity). We showed that the
network structure based on IGE patient data displayed an
abnormal tendency to become rapidly synchronised, generating
seizure-like synchronised activity throughout the network.134

THE FUTURE
Clinical studies and experimental research in epilepsy have
produced a substantial description of a set of human epilepsy
disorders and a range of experimental epilepsies, some of which
may be directly relevant to human epilepsy. Nonetheless, we are
far from a full mechanistic description of any epilepsy disorder.
Substantial evidence points to the involvement of specific brain
circuits in epilepsy, and that these circuits or networks are not
just local microscale phenomena but are large scale networks
involving brain regions at a distance from one another (including
specific cortical regions, thalamus, striatum) and their connec-
tions. Sufficient data exist to motivate the creation of biologi-
cally inspired dynamic models, and to explore these models for
unexpected emergent properties in a way that is not feasible in
biological systems, and to understand the mechanisms that
allow seizures to emerge in the model. Sufficient data also exist
to motivate creation of simplified models of brain connections,
and to describe the properties of the networks globally and
locally.
Although in principle any brain disease could be studied in

this way, epilepsy seems the most compelling choicedthe brain
in epilepsy moves dynamically between seizure and normal
states, hence dynamic modelling is highly appropriate; and
seizures have their clinical expression through their emergence in
large networks, therefore establishing the epilepsy specific
properties of such networks is crucial. Combining dynamic
models of specific brain regions and connecting these regions
according to the appropriate network structure will be an
important step towards a more comprehensive mechanistic
explanation of epilepsy.
What could such models provide that we do not already have?

An important step forward would be to identify the common
pathways and mechanisms that exist in epilepsies that seem to
have a different basis genetically or in experimental models. For
example, why does one particular patient with hippocampal
sclerosis have seizures identical to a different patient with
a small tumour in the mesial temporal lobe? The microscale
disturbances of neuronal function and connections related
directly to the cause are certainly different between these
different patients, but these different mechanisms converge on
a common pathway. This common pathway might be very
difficult to identify without constructing a model that could
encompass the differing microscale mechanisms of seizure onset,
and allow common emergent mechanisms at a different scale to
be seen. The existence of antiepileptic drugs which treat
epilepsies of many different causes is evidence of some common
mechanisms across different causes of epilepsy, but these are
little understood currently. A second important step would be to
provide a basis for classifying epilepsies through description of
mechanisms revealed in the modeldfor example, epilepsies
might be classifiable based on the dynamic mechanisms of
seizure onset or by the mechanism which allows a localised
onset to engage large scale brain circuits. A third important step
would be to explore in the model the effects of treatment, or
even to design new treatments based on investigation of the
model. To take one example, deep brain stimulation is a poten-
tial new treatment for epilepsy, but there is no consensus about
the optimal site, intensity and frequency of stimulation; a well
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constructed model would allow a very wide range of stimulation
parameters to be explored, in a manner unfeasible in a clinical
trial. Another example would be to improve epilepsy surgery,
perhaps identifying in some patients that cutting a specific
connection or making a minimal local resection in a crucial
network node would be sufficient to stop seizures. A fourth step
would be to introduce a way to predict drug treatment response:
if a specific mechanism were identifiable in a model this might
predict responsiveness to a specific drug, and fitting parameters
to data from a patient might show that certain key parameters
had or had not changed in response to a new treatment, which
could indicate whether the new treatment is affecting the
therapeutic mechanism as expected.

Well developed computational dynamic models of epilepsy
exist already, and are constantly being further developed; the
tools of brain connectomics are rapidly developing, and this new
science is making new insights into brain function and
dysfunction. The marriage of dynamic models and connectomics
models in the investigation of epilepsy mechanisms will be
productive.
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