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ABSTRACT
Background In randomised trials testing treatments for
acute ischaemic stroke, imaging markers of tissue
reperfusion and arterial recanalisation may provide early
response indicators.
Objective To determine the predictive value of
structural, perfusion and angiographic imaging for early
and late clinical outcomes and assess practicalities in
three comprehensive stroke centres.
Methods We recruited patients with potentially
disabling stroke in three stroke centres, performed
magnetic resonance (MR) or CT, including perfusion and
angiography imaging, within 6 h, at 72 h and 1 month
after stroke. We assessed the National Institutes of
Health Stroke Scale (NIHSS) score serially and functional
outcome at 3 months, tested associations between
clinical variables and structural imaging, several
perfusion parameters and angiography.
Results Among 83 patients, median age 71 (maximum
89), median NIHSS 7 (range 1–30), 38 (46%) received
alteplase, 41 (49%) had died or were dependent at
3 months. Most baseline imaging was CT (76%); follow-
up was MR (79%) despite both being available acutely.
At presentation, perfusion lesion size varied considerably
between parameters (p<0.0001); 40 (48%) had arterial
occlusion. Arterial occlusion and baseline perfusion
lesion extent were both associated with baseline NIHSS
(p<0.0001). Recanalisation by 72 h was associated with
1 month NIHSS (p=0.0007) and 3 month functional
outcome (p=0.048), whereas tissue reperfusion, using
even the best perfusion parameter, was not (p=0.11,
p=0.08, respectively).
Conclusion Early recanalisation on angiography
appeared to predict clinical outcome more directly than
did tissue reperfusion. Acute assessment with CT and
follow-up with MR was practical and feasible, did not
preclude image analysis, and would enhance trial
recruitment and generalisability of results.

INTRODUCTION
New treatments for acute ischaemic stroke are
likely to have modest effects, so randomised con-
trolled trials (RCTs) based on clinical outcomes
need large sample sizes. Large trials are expensive
and time consuming. Imaging might accelerate
drug evaluation by providing markers of clinically
relevant treatment effects in the initial

‘proof-of-concept’ phase and potential imaging sur-
rogate outcome markers in phase 3 trials.1

Reperfusion of the ischaemic tissue, recanalisa-
tion of the occluded artery or subacute infarct size1

on CT or MRI are all potential imaging markers.
Arterial recanalisation was associated with more
independent survival after stroke.2 Tissue reperfu-
sion was associated with reduced final infarct size
and possibly, with improved functional outcomes.3 4

Arterial recanalisation is not the same as tissue
reperfusion, though these terms are often used
interchangeably, adding to difficulties in interpret-
ing previous studies.5

Perfusion and angiographic imaging have some
disadvantages. Both require intravenous contrast
(contraindicated in renal impairment and in dia-
betic patients receiving oral hypoglycaemic agents).
Image acquisition and processing may delay treat-
ment, attenuating tissue salvage. Patients must
cooperate for diagnostic-quality images to be
obtained. Some CT scanners have limited brain
coverage for perfusion imaging. CT angiography
(CTA) and perfusion imaging increase the radiation
dose. Some patients with hyperacute stroke do not
tolerate (or have contraindications to) MRI.6 The
definition of tissue at risk of infarction varies7;
which of the many perfusion parameters,8 flow
thresholds9 and image acquisition and processing
parameters9 to use has yet to be agreed.
Whether reperfusion or recanalisation is the

better or more practical marker for clinically rele-
vant outcomes is unclear, there being few previous
comparisons and these used magnetic resonance
(MR) data.10 Performing either perfusion or angio-
graphic imaging, rather than both, would make
assessment of the patient with hyperacute stroke
easier and faster. Being able to use either CT or
MRI would also increase access by centres and
patients to trials and might help to enhance recruit-
ment rates beyond those seen in RCTs that to date
have used advanced imaging to select patients for
inclusion.
We undertook this study in three regional stroke

centres to test strategies for use of imaging in
future clinical trials: first, practical aspects for trial
design such as the effect on recruitment and image
analysis of allowing use of either CT or MR in
patients with hyperacute stroke; and second,
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whether imaging measures of tissue perfusion or arterial
patency were most strongly associated with clinically relevant
parameters.

METHODS
This prospective study was conducted in three comprehensive
regional UK stroke centres. The study was approved by the
Scotland A multicentre research ethics committee (07/MRE00/
96), and written informed consent was obtained from all com-
petent patients, or from a relative of patients incapacitated by
their stroke. There were limited data on which to calculate
sample size. We aimed to recruit equal proportions of patients
with CT and MR, perfusion and angiography at baseline and to
test feasibility by the proportion recruited with each modality.
We aimed to recruit at least 80 patients within the 2 years avail-
able for the study to obtain data to enable formal sample size
calculations based on proportions with perfusion or angio-
graphic lesions and associations with clinical and imaging out-
comes for future RCTs. A STROBE checklist is included in
online supplementary material.

Patient recruitment
We considered all patients with potentially disabling acute
ischaemic stroke who could be imaged within 6 h of stroke
onset with CT or MR. Patients with MR-incompatible implants
or other standard MR contraindications were excluded from
MR but could still have CT; patients with impaired renal func-
tion (estimated glomerular filtration rate ≤30 ml/min) were
excluded. We recorded numbers of potentially eligible patients
who were not recruited and the main reason for exclusion.
Alteplase and other licensed acute treatments were given accord-
ing to clinical indication.

Clinical assessment
We assessed National Institutes of Health Stroke Scale (NIHSS)
score at baseline, 24 h, 72 h, 7 and 30 days, and stroke subtype
by the Oxfordshire Community Stroke Project (OCSP) classifi-
cation. We obtained demographic data, past medical history,
medications and vital signs at baseline. We assessed functional
outcome using the modified Rankin Scale (mRS) by structured
interview,11 blind to early clinical and all imaging results, at 1
and 3 months.

Image acquisition
We performed admission imaging with either plain CT brain
scan, CT perfusion (CTP) with bolus tracking of intravenous
contrast and circle of Willis CTA; or with MR including diffu-
sion imaging (DWI), T2-weighted or FLAIR, T2*-weighted
imaging, perfusion imaging (MRP) by intravenous gadolinium
bolus tracking and circle of Willis MR angiography (MRA). We
aimed for a 50 : 50 balance with CT and MR, the choice of
baseline imaging being dictated by scanner availability, patient
compliance and contraindications. However, all three sites had
hospital-based, research-dedicated MR scanners available in
working hours and National Health Service CT scanners. We
performed follow-up imaging with MR in all MRI-compatible
patients at 72 h and 30 days, irrespective of the baseline imaging
modality, and with CT for MR-incompatible patients. We used
72 h (3 days) for optimum capture of early imaging outcomes
(72 h is the time at which peak infarct swelling occurs) and to
assess haemorrhagic transformation. One centre did not
perform 30-day angiography. CTP slices were located to cover
any ischaemic lesion visible on plain CT and/or the standard
Alberta Stroke Program Early CT Score (ASPECTS) score

slices12 if no lesion was visible. We harmonised the protocols
between centres to a common standard but otherwise left them
as optimised for each site and scanner.

Image analysis
All analyses were blinded to clinical, imaging and outcome
information. Image data were transferred via the Scottish
National Picture Archiving and Communication System for
central image analysis. We anonymised the data (using
DICOMConfidential13) for offline central analysis.

The perfusion parameter maps were generated offline using
validated software.8 14 All baseline and follow-up MR diffusion,
perfusion and CT data were registered to the baseline CT
volume brain image or MR DWI B0 image and motion cor-
rected. Quantitative (cerebral blood flow (CBF); cerebral blood
volume (CBV); and mean transit time (MTT); time to peak
(TTP) of the residue function (Tmax) and relative (arrival time
fitted (ATF); TTP) parameter maps were produced. We per-
formed deconvolution using singular value decomposition, by a
delay-insensitive method (block-circulant matrix),8 14 15 and
took arterial input function from the proximal contralateral
middle cerebral artery (MCA) and venous outflow from the
sagittal sinus. We did not apply specific thresholds, preferring to
evaluate a range of parameters as these have not yet been widely
tested against clinical or other imaging parameters,7 and consen-
sus on processing9 has still to be decided through the Stroke
Imaging Roadmap (STIR)16 and Stroke Treatment Academic
Industry Roundtable (STAIR) groups (update expected 2013).

One expert neuroradiologist performed qualitative image
assessment. We quantified the ischaemic lesion extent on struc-
tural MR and plain CT imaging using the Third International
Stroke Trial (IST-3)17 and ASPECTS scores12 which have similar
inter- and intrarater reliability.18 ASPECTS quantifies perfusion
and structural lesions in the MCA territory.12 The IST-3 score
assesses all vascular territories and codes lesion location, extent,
degree of tissue attenuation/signal intensity and mass effect.17

We quantified lesion swelling,17 presence and location of hyper-
attenuated artery17 19 haemorrhagic transformation and general
brain appearance (prior stroke lesions, leukoaraiosis20 and
atrophy21).

We rated the extent of perfusion lesions using (1) the
ASPECTS score,12 subtracting a point for each brain region
affected, even in part, by the perfusion lesion and (2) by record-
ing if there was (a) no visible perfusion lesion, (b) a visible per-
fusion lesion that was no more than 80% of, (c) about the same
size as, or (d) 20% or more larger by visually estimated volume
than the structural ischaemic lesion. These cut-off points were
chosen to reflect previous studies.3 We scored all of the above
perfusion parameters without thresholds (in the absence of a
clearly agreed or validated threshold)7 and the extent of contrast
enhancement on the dynamic source images (‘raw data’).
Mismatch was defined as a perfusion lesion >1 ASPECTS
points larger than the structural lesion.

We scored arterial patency in the affected artery on CTA or
MRA using base and maximum intensity projection angio-
graphic images and the Mori22 23 and Thrombolysis in
Myocardial Infarction (TIMI)24 scores, rating the primary occlu-
sive lesion and patency of the immediately distal visible arteries,
but not the distal arterial tree or tissue perfusion.

Data management and statistical analysis
We entered data into a purpose-designed centralised electronic
case record form with consistency checks. The statistical analysis
plan was finalised 6 months before recruitment completion.
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There were few differences in patient characteristics between
centres, so we analysed the whole cohort together. We assessed
changes in baseline clinical, structural, perfusion and angiog-
raphy characteristics at 72 h and at 30 days. We analysed change
in the extent of perfusion lesion between time points using
(1) the change in ASPECT score and (2) change classified as ‘any
reduction’, ‘no change’ or ‘any increase’ in perfusion lesion
extent. We analysed change in arterial patency by change in the
hyperattenuated artery sign and change in Mori/TIMI scores
separately, and then created a composite score of ‘change in any
of hyperattenuated artery or angiographic patency based on the
TIMI score’. We did not impute missing data as the major
reason for not undergoing follow-up imaging was death or
being too unwell. We used the Spearman rank correlation and
95% CI, and the Wilcoxon–Mann–Whitney, Kruskal–Wallis and
χ2 tests to explore associations between variables. We applied
Bonferroni correction for multiple comparisons to the
ASPECTS measurement of multiple perfusion parameter lesion
sizes at baseline; other p values are not corrected.

RESULTS
Recruitment
We screened 360 potentially eligible patients from 21 April
2008 to 31 March 2010 and recruited 83 (23%). The main
reasons for exclusion were mild stroke/late arrival 125 (35%),
outside 9:00–17:00 59 (16%), intolerant of imaging 12 (3%),
refused consent 17 (5%), recruited to a competing study 52
(14%) or haemorrhagic stroke 4 (1%).

Patient characteristics
Of the 83 recruited, median age 71 years (maximum 89), 60%
were male and vascular risk factors were common (see online
supplementary table S1). Almost half, 38 (46%), received alte-
plase open label; two patients were randomised (to control) in a
trial of alteplase in acute ischaemic stroke (http://www.ist3.com).
The median baseline NIHSS score was 7, range 1–30, and 62
(75%) had total or partial anterior circulation stroke. At
3 months, 41 (49.4%) were dependent or had died (mRS 3–6).

Most baseline imaging was with CT (63/83, 76%) but most
follow-up imaging was with MR. The median time to first scan
was 2.75 h (minimum 1.25, maximum 5.58 h), 42/83 patients
(51%) being imaged <3 h and 49% from 3 to 6 h. Follow-up
imaging was obtained in 72 at 72 h and 48 at 30 days (see
online supplementary table S2). The main reasons for missing
follow-up imaging were death (10) or being too unwell (20).
Fewer patients completed perfusion and angiography imaging
than structural imaging, but the completion rate did not differ
between the first two modalities.

Structural imaging
At baseline, 63/83 (76%) patients had a visible ischaemic lesion
on structural imaging, most (76%) in the MCA territory (see
online supplementary table S2). Background brain changes
included severe cerebral atrophy (9, 11%), severe white matter
lesions (11, 13%) and prior infarct (24, 29%).

Perfusion imaging
The proportion of visible perfusion lesions at baseline and their
size varied between perfusion parameters (figure 1). MTT-based
parameters (MTT, ATF, TTP, and Tmax) were larger than CBF
or CBV (signed-rank test p<0.0001 for all CBV and p<0.0009
for all CBF comparisons with MTT-based parameters,
Bonferroni corrected). MTT-based lesions also showed more
mismatch (figure 2). MTT-based lesion sizes did not differ, so

we used Tmax in all further comparisons. At baseline, a Tmax
lesion was visible in 48 (61%) patients, 31 of whom (65% of
those with a Tmax lesion, 39% of all patients) had mismatch
(see online supplementary table S2); by 30 days, the Tmax
lesion volume had decreased in 32, was unchanged in 13 and
increased in three patients; mismatch persisted on Tmax in 5
(10%) at 72 h and 1 (5%) at 30 days.

Figure 1 Extent of the perfusion lesion at baseline according to
various perfusion parameters as quantified by the ASPECTS score.
Shaded areas represent the IQR; horizontal line within the shaded area
is the median, point marked within the shaded area is the mean.
Where not shown separately, the median has the same value as the
upper quartile: ASPECTS=10. ASPECTS, Alberta Stroke Program Early
CT Score; ATF, arrival time fitted; CBF, cerebral blood flow; CBV,
cerebral blood volume, MTT, mean transit time; raw data, lesion as
seen on preprocessed perfusion image; TTP, time to peak; Tmax, time
to peak of the residue function.

Figure 2 Perfusion lesions and mismatch rates by perfusion
parameter. Mismatch defined as a perfusion lesion >20% larger than
the structural lesion. CBF, cerebral blood flow; CBV, cerebral blood
volume; Tmax, time to peak of the residue function, a measure of
mean transit time.
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Angiographic imaging
At baseline, 40/83 (48%) patients had an occluded intracranial
artery, most being in the MCA main stem (22%) or MCA
branch (27%, see online supplementary table S2). Sixteen
patients without baseline arterial occlusion (16/43, 37%) had a
baseline perfusion deficit on one or more perfusion parameters
(figure 3, shows association for Tmax). Arterial occlusion per-
sisted in 16 (40% of those with baseline occlusion or 22% of
those imaged) at 72 h and in 4/48 (8%) at 30 days.

Baseline clinical and imaging associations
At baseline, a higher NIHSS score was associated with larger
lesions on structural (p<0.0001) and perfusion imaging (all
parameters, p<0.02–0.001) by ASPECTS and with arterial
occlusion (p<0.001, table 1). Larger structural and perfusion
lesions, but not arterial occlusion, were associated with increas-
ing age; time to scanning was not associated with any imaging
parameter. Arterial occlusion was associated with increasing
baseline structural lesion extent (p<0.0001) and larger perfu-
sion lesions (all p<0.0001, see online supplementary table S3).

Imaging and clinical outcome, reperfusion and
recanalisation
Infarct extent on structural imaging at 1 month was associated
with baseline NIHSS (Spearman correlation ASPECTS −0.59
(95% CI −0.75 to −0.36), p<0.001; IST-3 0.44 (95% CI 0.17
to 0.65), p=0.002) and with baseline OCSP (Kruskal–Wallis
test: ASPECTS p=0.0002, IST-3 p=0.0071). Reperfusion by
72 h —that is, reduction in the perfusion lesion ASPECTS
score, showed no consistent association by any perfusion param-
eter, with NIHSS at 72 h or 1 month or mRS at 1 or 3 months
(table 2). However, arterial recanalisation by 72 h was associated
with NIHSS at 7 days (p=0.04) and 1 month (p=0.0007) and
with mRS at 1 (p=0.04) and 3 months (p=0.03; Wilcoxon).

Figure 3 Proportions of patients with/without a perfusion defect (on
Tmax) and/or arterial obstruction within 6 h, at 72 h and 30 days after
stroke. Numbers on bars are numbers of patients. Tmax, time to peak
of the residue function, a measure of mean transit time.
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Other imaging outcomes
Infarct swelling at 72 h was associated with larger perfusion
lesions at baseline (Tmax, Spearman −0.536 (95% CI −0.688
to −0.337), p value <0.0001) and with persistent arterial occlu-
sion at 72 h (Spearman −0.338, (95% CI −0.529 to −0.114),
p=0.0035). Haemorrhagic transformation at 72 h was asso-
ciated with baseline arterial occlusion (p=0.02) but not perfu-
sion lesion extent or change in perfusion lesion by any
parameter, or change in arterial patency.

DISCUSSION
In this direct comparison in patients with moderate to severe
stroke, half of whom were receiving intravenous alteplase, we
found consistent associations between arterial occlusion/recana-
lisation and neurological or functional outcomes, but more vari-
able clinical associations with NIHSS and mRS for perfusion
lesions and reperfusion regardless of the perfusion parameter
used. Potential imaging markers should be clinically relevant.25

The clinical relevance of arterial occlusion and recanalisation is
supported by a meta-analysis of observational data,2 although
meta-analyses are less clear for tissue perfusion, mismatch or
reperfusion.4 26

We identify several other points of value for future stroke
trials. Nearly 80% had a visible ischaemic lesion on baseline
structural imaging, although most had CT and more than half
were scanned within 3 h of stroke, confirming the usefulness of
CT in moderate to severe stroke with a structured review
process. MR with DWI might have shown acute ischaemic
lesions in a higher proportion, but at the risk of patient loss to
recruitment. We achieved high recruitment rates, while also
giving thrombolytic treatment to nearly half the patients. We
demonstrate that it is feasible to recruit with CT and follow-up
with MR, removing the requirement to use only one modality
in clinical trials, increasing patient participation and recruitment
rates. We recruited four times as many patients during the study
by allowing use of CT at presentation and MR for follow-up
than if we had insisted on MR at presentation, despite having
research-dedicated MR scanners in all three centres. We per-
formed early follow-up imaging at 72 h to capture peak infarct
swelling and haemorrhagic transformation, but follow-up
imaging could be performed earlier depending on its main
purpose. These actions together, if used in RCTs, would increase
the generalisability of the results, reduce time to trial comple-
tion and costs and enhance the rate at which new treatments
could be tested.

Our study had limitations. We were unable to recruit some
patients outside 9:00–17:00 (16%). The difficulty of performing
MR at presentation mirrors experience of other observational
studies6 and RCTs.3 27 We used three CTand three MR scanners
so our data will include between-scanner variability. However,
no two scanners’ performance, even the same make and model,
are identical or remain static. We minimised the impact of
scanner variability by using sequences optimised for each
scanner and centralised analysis. Furthermore, between-patient
biological variability is generally larger than between-scanner
variability, large sample sizes overcome patient and centre het-
erogeneity and provide generalisable results. CTP may cover less
brain than MRP, but we scored all brain regions showing any
involvement in the perfusion lesion, minimising the effect of
reduced brain coverage. Visual quantification can be performed
when volume assessment cannot —for example, where there is
incomplete lesion coverage, or scan quality (eg, movement arte-
fact) precludes computational assessment. We used a composite
angiographic score, including evidence of arterial occlusion on
angiography or hyperattenuated artery/absent flow void, but
only after testing the individual components. Hyperattenuated
artery is specific for arterial occlusion, although lacks sensitivity,
but its disappearance was an independent predictor of good
outcome in a large alteplase registry,19 justifying its use in a
composite arterial patency score. We did not evaluate CTP base
images which may help detect small peripheral arterial branch
occlusions, potentially blunting the sensitivity of the association
between occlusion/recanalisation and outcome. We did not
report the results by alteplase allocation because use of alteplase
was non-random and the bioeffects of alteplase contribute to
the analysis of reperfusion and recanalisation. We did not use
apparent diffusion coefficient (ADC), CT attenuation or perfu-
sion threshold values to define lesions. However, there is no
clear ADC threshold for infarct core,28 the observer reliability
of ADC-based lesion measurement is limited,29 there is no vali-
dated perfusion threshold7 30 and different perfusion para-
meters produce widely different lesions.8

The study also had strengths. We used pragmatic composite
imaging outcome measures but only after testing individual
parameters; the composite measures were prespecified, as spe-
cific and as valid for defining recanalisation and reperfusion as
possible.5 7 The qualitative image rating, performed by one
observer carefully blinded to all other scan and clinical data,
used extensively validated tools,12 17 18 31 and minimised obser-
ver variability. TIMI and Mori scores have been used widely by

Table 2 Imaging evidence of lesion reperfusion or arterial recanalisation and associations with clinical outcomes

Parameter Reperfusion

CT or MR perfusion: evidence of reperfusion on:

CTA or MRA:
recanalisation
composite measure

Tmax p Value CBF p Value CBV p Value p Value

NIHSS day 7 (median, IQR) Yes 6 (3, 11.5) 0.066 6 (3, 13) 0.15 6 (3, 10.5) 0.30 4.50 (2, 7) 0.044
No 3 (1, 6) 3 (1, 7) 3 (1, 7) 9 (3.5, 13.5)

NIHSS 1 month (median, IQR) Yes 2 (1, 5) 0.11 2 (1, 6) 0.064 2 (1, 6) 0.16 1 (0, 3) 0.00065
No 1 (0, 3) 1 (0, 3) 1.5 (0, 3) 5 (3, 11)

mRS at 3 months (median, IQR) Yes 3 (2, 4) 0.076 3 (2, 4) 0.067 3 (2, 4) 0.11 2 (1, 3) 0.028
No 2 (1, 3) 2 (1, 3) 2 (1, 3) 3 (2, 4)

Age, years (median, IQR) Yes 74 (65, 82) 0.074 74 (65, 82) 0.047 75 (67, 83) 0.0085 70 (63, 79) 0.58
No 68 (60, 77) 69 (51, 74) 67 (51, 72) 70 (63, 77)

p Values are for the Wilcoxon–Mann–Whitney test comparing groups with/without reperfusion/recanalisation.
CBF, cerebral blood flow; CBV, cerebral blood volume; CTA, CT angiography; MR, magnetic resonance; MRA, MR angiography; mRS, modified Rankin Scale; NIHSS, National Institutes of
Health Stroke Scale.
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others,10 23 27 32 although the way in which they are used varies
and other scores exist that should be tested in future work. We
scored the primary point of arterial occlusion, thereby avoiding
conflating several different aspects of vascular patency in one
score, as discussed.33 We tested multiple perfusion parameters,
demonstrating again the wide variability in lesion frequency, size
and more importantly, confirming the variable relationship to
functional outcome.8 We found little association between mis-
match identified by any perfusion parameter and infarct growth
or final clinical outcome. Our visual assessment method might
have been insensitive, but there is good agreement between
qualitative and quantitative data,29 and this result agrees with
previous observational studies8 and trials.4 We show that persist-
ent arterial occlusion and extensive perfusion defect at presenta-
tion predicted subacute lesion swelling; and arterial occlusion at
baseline, but not recanalisation or reperfusion, was associated
with haemorrhagic transformation. Many investigators prefer
lesion volume to scoring measures, but volumes are unusable on
poor quality images or where there is limited lesion coverage,
and ‘volume’ does not distinguish the true increase in lesion
extent from apparent growth due to swelling. Confounding
effects of swelling on lesion volume might have influenced pre-
vious analyses.1 Insistence on quantitative analyses may restrain
study design, resulting in data loss and slower recruitment. Our
sample size is similar to that of other studies using multimodal
imaging performed in many more centres.3

One previous study compared MR perfusion and angiography
imaging with clinical variables in the same patients.10 This small
study found stronger associations for clinical outcome with
reperfusion, but their analysis might have been influenced by
double counting perfusion in the version of the angiography
(TIMI) score that was used. Another study that compared base-
line CTP, CTA, plain CT and a composite score in 44 patients,
found that CTP was a slightly stronger predictor of 3 month
mRS than CTA, but that the composite score was the best pre-
dictor, but did not assess recanalisation or reperfusion.34 No
other studies allowed both CT and MR to be used in the same
patients. We examined all angiographic scores for stroke33: all
conflate two or three components in one score—the primary
obstruction, the vessels distal to the obstruction and tissue per-
fusion. This might have contributed to difficulties when using
the scores in the past. No additional perfusion thresholds or
parameters have been published since the systematic reviews of
perfusion imaging.7

Angiography imaging of intracranial arteries with CT or MR
is a clinically relevant marker for use in acute stroke treatment
trials. Insistence on use of MR to assess patients before recruit-
ment in trials will increase the number of centres required to
overcome the restricted recruitment, increase costs, restrict the
range of patients that can be recruited and limit generalisability
of results. CT is the most commonly used modality for patient
assessment before thrombolytic treatment; substantial data are
now available indicating that it can be used safely in this situ-
ation.35 With appropriate image processing methods, both CT
and MR can be used in patient follow-up; this increases flexibil-
ity, recruitment rates and generalisability of results. Visual image
scoring was sensitive and detected changes in lesions and clinical
outcomes with variation in perfusion or angiography lesion
scores. Efforts to standardise acquisition, analysis and interpret-
ation of perfusion imaging are required to reduce perfusion
lesion variation; offline processing tools36 may help if quickly
accessible and widely available. Scores for arterial occlusion and
recanalisation should focus on arterial not tissue components
now that perfusion imaging is available.

If imaging is to be used as a ‘biomarker’ in acute stroke trials,
then it should measure a pathological process and predict result-
ing benefit, or harm. A ‘qualified biomarker’ is not yet vali-
dated.25 A ‘surrogate outcome marker’ is a biomarker which
definitely substitutes for a clinical endpoint and measures drug
efficacy or toxicity. Biomarker validation is a graded, incremen-
tal, evidentiary process. Biomarkers should reflect clinically rele-
vant endpoints.25 Arterial recanalisation may more closely
match the requirements of a biomarker than perfusion imaging,
partly because tissue perfusion varies more with biological and
technical factors than does angiography, so has a more complex
relationship to clinical parameters. However, considerably more
data from perfusion and angiography imaging are required
before imaging markers can substitute for clinical outcomes.
Future RCTs and observational multicentre studies using
complex imaging could maximise patient recruitment by using
CTor MR at baseline and for follow-up. Pragmatic use of quali-
tative visual scoring and quantitative analyses also minimises
data loss, maximising accessibility, recruitment and
generalisability.
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Table S1 Patient characteristics at presentation and follow-up for 83 recruited 
patients (unless otherwise stated). 

Parameter Levels Values 

Age (years) Median [Min:Max] 70·8 [28·2:89·5] 

Sex Male 50 (60·2%) 

 Female 33 (39·8%) 

Smoking status Never smoked 32 (38·6%) 

 Ex-Smoker 28 (33·7%) 

 Current Smoker 23 (27·7%) 

Previous Stroke  Yes 18 (21·7%) 

(Unknown 3, 3·6%) No 62 (74·7%) 

Hypertension Yes 54 (65·1%) 

 No 29 (34·9%) 

Diabetes Yes 9 (10·8%) 

(Unknown 1, 1·2%) No 73 (88·0%) 

Atrial fibrillation Yes 23 (27·7%) 

 No 60 (72·3%) 

Ischaemic heart disease (angina or MI) Yes 28 (33·7%) 

(Unknown 2, 2·4%) No 53 (63·9%) 

Stroke subtype (OCSP) TACS 20 (24·1%) 

 PACS 42 (50·6%) 

 POCS 6 (7·2%) 

 LACS 15 (18·1%) 

NIHSS baseline Median [Min:Max] 7 [1:30] 

NIHSS subacute Median [Min:Max] 6 [0:28] 

NIHSS Day 7 Median [Min:Max] 5·5 [0:26] 

NIHSS 1 month Median [Min:Max] 2 [0:24] 

mRS at 1 month                 (unknown in 6, but 
alive) 

mRS 0-2 35 (45·5%) 

 mRS 3-6 42 (54·5%) 

 Dead 8 (9·6%) 

mRS at 3 months mRS 0-2 42 (50·6%) 

 mRS 3-6 41 (49·4%) 



 2 

Parameter Levels Values 

 Dead 9 (10·8%) 

MI=myocardial infarction; OCSP=Oxfordshire Community Stroke Project classification of 

stroke subtype; NIHSS=National Institutes of Neurological Disorders and Stroke Scale 

for stroke severity; mRS=modified Rankin Scale 
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Table S2 Summary of imaging findings 

 Baseline 72 hours 30 days 

Total patients, n 83 72 48 

Structural imaging 

CT, n (%) 63 (76%) 12 (17%) 4 (8%) 

MR, n (%) 20 (24%) 60 (76%) 44 (92%) 

Median time (range), hours 2·75 (1·25; 5·58)   

Visible ischaemic lesion, n 

(%) 

63 (76%) 61 (85%)  

Vascular territory:      MCA, n 

(%) 

44 (70%)   

Lacunar, n (%) 6 (9%)   

Posterior, n (%) 13 (21%)   

Severe cerebral atrophy, n 

(%) 

9 (11%)   

Severe WML, n (%) 11 (13%)   

Prior infarct, n (%) 24 (29%)   

Perfusion imaging 

Number with complete and 

analysable imaging (%) 

79 (95%) 54 (75%) 45 (94%) 

Tmax perfusion defect, n (%) 48 (61%) 20 (37%) 9 (20%) 

Angiography 

Number with complete and 

analysable imaging (%) 

73 (88%) 53 (74%) * 

Any arterial occlusion 

(composite measure), n (%) 

40 (48%) 16 (22%) 4 (8%)  

CT=computed tomography; MR=magnetic resonance; MCA=middle cerebral artery; 

WML=white matter lesions; Tmax=time to peak of the residue function 
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Table S3 Online only. Associations between baseline lesion extent (ASPECTS score) and arterial occlusion 

 

ASPECTS score for: Arterial patency (composite)   

 No occlusion 

(n=41) 

Occlusion 

(n=42) 

Overall  

(n=83) 

P-value 

Structural CT or MR lesion extent  10 [9, 10] 7 [4, 8] 9 [7, 10] <0·0001 

CBF perfusion lesion extent  10 [10, 10] 6 [3, 9] 10[6, 10] <0·0001 

CBV perfusion lesion extent  10 [10, 10] 8 [4,10] 10[8, 10] <0·0001 

Tmax perfusion lesion extent 10 [9, 10] 4 [1, 8] 9[4,10] <0·0001 

 

Data shown are median [interquartile range] ASPECTS scores; p-values are from Wilcoxon-Mann-Whitney test.  
ASPECTS=Alberta Stroke Program Early CT Score; CT=computed tomography; MR=magnetic resonance; CBF=cerebral blood flow; 
CBV=cerebral blood volume; Tmax=time to peak of the residue function. 
 


