The tough body at the epicentre of amyotrophic lateral sclerosis

The corpus callosum is a signpost to the interhemispheric highways underpinning the widespread cerebral pathology that typifies the syndrome of ALS

Martin R Turner, Ricarda A L Menke

The brain has become axiomatic to understanding pathogenesis in amyotrophic lateral sclerosis (ALS), not least given the clinical, molecular and genetic overlap with frontotemporal dementia.1 ALS, although defined in part by its lower motor neuron degeneration, now appears misfiled alongside the neuromuscular disorders. The corpus callosum (CC, Latin translation: tough body) is a pervasive network that has long been identified. The tough body at the epicentre of symptoms in ALS is typically focal and the putamen, also showed reduced asymmetrical functional connectivity and between the superior temporal gyri, the latter aligning with the recognition of consistent verbal fluency impairments in ALS. Cognition was not explored in this study (those with significant cognitive impairment were excluded), though more anterior regions of the CC have been previously linked to measures of frontal lobe dysfunction in ALS.11 Nonetheless, asymmetrical functional connectivity changes were noted by Zhang et al in multiple bihemispheric regions connected through anterior and posterior parts of the CC, as one would predict with the concept of ALS as a widespread cerebral network disorder, despite its motor-predominant phenotype.

The authors point out that the brain is not symmetrical, which may distort phenotype correlations in relation to voxel mirrored homotopic connectivity. The onset of symptoms in ALS is typically focal and strikingly asymmetric for most of the two-thirds of patients where it begins in a limb. Limb dominance influences laterality of first weakness in upper limb-onset ALS, and there is a higher probability of contralateral versus ipsilateral sequential limb involvement.13 14 The DTI white matter signature is consistently symmetrical however.15 This may reflect group-level analysis in what is a clinically heterogeneous syndrome. Furthermore, there is an average diagnostic delay of ∼1 year in ALS, so that bihemispheric pathology (if not symptoms as well) may be established by the time individuals reach the MRI scanner. With evolving ideas about transsynaptic transmission of pathology in ALS, a natural question is whether the CC facilitates interhemispheric spread. A potentially disease-modifying effect of callosotomy in the presymptomatic period is then a compelling concept, and potentially testable in appropriate non-human models.

In the context of assessing the effects of other therapeutic interventions, the CC, uniquely spanning the breadth of ALS cerebral pathology, warrants further assessment as both a phenotype stratifying and potentially pharmacodynamic biomarker.

Contributors MRT drafted the commentary. RALM edited the commentary.

Funding Medical Research Council. Grant number MR/K01014X/1.

Competing interests None declared.

Provenance and peer review Commissioned; internally peer reviewed.

To cite Turner MR, Menke RAL. J Neurol Neurosurg Psychiatry 2017;88:369–370. doi:10.1136/jnnp-2016-315247

REFERENCES


Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK

Correspondence to Professor Martin R Turner, Nuffield Department of Clinical Neurosciences, Oxford University, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK; martin.turner@ndcn.ox.ac.uk

Nuffield Department of Clinical Neurosciences, Oxford University, West Wing Level 6, John Radcliffe Hospital, Oxford OX3 9DU, UK; martin.turner@ndcn.ox.ac.uk
involvement in different motor neuron diseases as studied by diffusion tensor imaging analysis. 


The tough body at the epicentre of amyotrophic lateral sclerosis

Martin R Turner and Ricarda A L Menke

*J Neurol Neurosurg Psychiatry* 2017 88: 369-370 originally published online December 13, 2016
doi: 10.1136/jnnp-2016-315247

Updated information and services can be found at:
http://jnnp.bmj.com/content/88/5/369.2

*These include:*

References
This article cites 14 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/88/5/369.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/