
The author has endeavoured to study the behaviour of the excitability and the reflex activity of the sigmoid centres in the dog in catatonia produced by bulbocapnin.

Using various doses of the drug he obtained in the different experiments practically all the catatonic symptoms observed and described by previous authors—narcosis, catalepsy, various hyperkinetic phenomena and epileptic convulsions. In none of these phenomena is the factor of inhibition or of excitation accompanied by appreciable variation in the excitability or reflex activity of the sensory motor cortical centres, or in the spontaneous behaviour of the animals subjected to experimental epilepsy.

The author has been able to demonstrate that the epileptic convulsions induced by strong doses of bulbocapnin were always definitely of noncortical origin.

The author regards the hypothesis of the cortical origin of experimental catatonia and of the specific action of bulbocapnin on the sensory motor cortex as unfounded.

R. G. G.


Various experimental procedures carried out on young cats resulted in the following changes of the dural arteries.

1. Stimulation of the cervical sympathetic nerve—ipsilateral constriction (average decrease in diameter 34 per cent.).

2. Stimulation of the vagus nerve—dilatation (average increase 15 per cent.) or no change in diameter.
3. Injection of epinephrine—constriction (average 29 per cent.).
4. Injection of pitressin—constriction (average 33 per cent.).
5. Inhalation of carbon dioxide—inconstant results.

The conclusion is reached that there is a close approximation between the degree of vasoconstriction in the dura and in the skin, both being considerably greater than that in the pia. Vasodilatation, on the other hand, is perhaps greater in the pia.

R. M. S.

NEUROPATHOLOGY


The three main types—neuroglia, astroglia and oligoglia—are distributed sparsely in the superficial cortical layers but show certain differences from layer to layer and from field to field. These differences however are not so great as to permit the observer to distinguish a cortical field by the arrangement of the glia without also taking into account the arrangements of nerve-cells and fibres. All that is claimed is that the author’s observations establish a standard for comparison in pathological conditions.

The second part of the study is concerned with neuroglial changes in diseases not affecting the nervous system.

This requires careful and critical examination, for progressive and regressive changes in the neuroglia are fairly common in the human cortex. All three types may be modified in diseases which seem to have no other effect, clinical or pathological, on the nervous system. Pure hyperplasia of the glia does occur, but a diagnosis of such a condition should only be arrived at with great caution. Even in diseases not affecting the nervous system the neuroglia and astroglia may form an almost continuous network. The staining properties of the glial cells may show variation, and this in itself would seem to be a progressive pathological change.

The question whether there is a correlation between vascular distribution and glial stratification cannot yet be answered with certainty.

R. G. G.

[33] Primary ependymitis: Subacute type with occlusion of the foramina of Monro and hydrocephalus of the lateral ventricles.—J. G. ARNOLD. Arch. of Neurol. and Psychiat., 1934, 32, 143.

The term 'primary' is used to designate the relatively uncommon group of cases of ependymitis in which there is no demonstrable concomitant inflammatory reaction of leptomeninges or cerebral tissue. When ependymitis is the result of meningitis or abscess of the brain, the clinical course is that of the