Supplementary File S1. Analysis of KCNJ18 and our reference sequence

*KCNJ18* has one coding exon (exon 3). This exon was amplified using polymerase chain reaction (PCR) under the following conditions: 94 °C for 5 min, followed by 35 cycles with 94°C for 30 s, 65°C for 1 min and 72°C for 1.5 min as well as a final elongation at 72°C for 10 min. For this procedure the primers of Ryan et al. (2010) were slightly modified for higher specificity (CCAGACATGCTGTCCTCTCTGTT/ GGGCCTCTCCCCGGCCA) and amplified by means of AmpliTaq Gold with GeneAmp (Applied Biosystems by Life Technologies, Carlsbad, CA, USA). For each preparation of 50 µl we used 50 ng DNA.

For some products, a second amplification was done using a nested PCR with the primers (ATGCTGTCCCTCTGTT/ CGGCCAGGGGTGGATGCTGCAT) under the following conditions: 94 °C for 5 min, followed by 35 cycles at 94 °C for 30 s, 65 °C for 1 min und 72 °C for 1.5 min as well as a final elongation at 72 °C for 10 min. The resulting products were sequenced using BigDye terminator v1.1, v3.1 mix and the forward-primers (CCAGACATGCTGCTCTCTTG/CTGGCGCTACATGCTGCT/CAGCCGTGGTGCCCTGAGAC/GCCAATGAGATCCTGTGGGGTCAC) on the capillary sequencer ABI 3130xl (Applied Biosystems by Life Technologies, Carlsbad, CA, USA).

Our wild type sequence differed from the published *KCNJ18* sequence in 11 bases and from the known *KCNJ12* sequence in 17 bases. Dr. Ryan’s actual *KCNJ18* sequence (personal communication) differed from our most frequent *KCNJ18* sequence in one base (c.473 T>C) that did not show up in our study. Our reference sequence for *KCNJ18* is:

```
gattgtgggaatcaggggttaaagcgcttcctccagtcgaagggcccctggaatgggtag
aggacctgggaaccacagccagcagcagcagtcgtcttcttggccagacccctgtgctgctgcc
```

Exon 3

```
ATG ACC GCG GCC AGC CGG GCC AAC CCC TAC AGC ATC GTG TCA TTG
GAG GAG GAC GGG CTG CAT GTC ACC ATG TCG GCC GCC AAC GGC
TTC GGC AAC GCC AAG GTG CAC ACG CAG CAC AGG TGC CGC AAC CGC
TTC GTC AAG AAG AAT GGC CAG TGC AAC ATT GCG TTC GCC AAC ATG
```
GAC GAG AAG TCA CAG CGC TAC CTG GCT GAC ATG TTC ACC ACC TGT
GTG GAC ATC CGC TGG CGC TAC ATG CTG CTC ATC TTC TCG CTG GCC
TTC CTT GCC TCC TGG CTG CTG TTC GCC GTG ATC TTC TGG GTG ATC
GCG GTG GCA CAC GGT GAC CTG GAG CCG GCT GAG GGC CAC GGC CGC
ACA CCC TGT GTG ATG CAG GTG CAC GGC TTC ATG GCG GCC TTC CTC
TTC TCC ATC GAG ACG CAG ACC ACC ATC GGC TAC GGG CTG CGC TGT
GTG ACG GAG GAG TGC CTG GTC GTG GCC TTC ATG GTG GTG GCC CAG
TCC ATC GTG GCC TGC ATC ATC GAC TCC TTC ATG ATT GGT GCC ATC
ATG GCC AAG ATG GCA AGG CCC AAG AAG CGG GCA CAC ACG CTG CTG
TTC AGC CAC AAC GCC GTG ATG GCC CTG CTG CTG GCC ATC GCC TGC
CTC ATG TGG CGT GTG GCC AAC CTG CGC AAG AGC CAC ATT GTG GAG
GCC CAT GTG CGC GCG CAG CTC ATC AAG CCG CGG GTC ACC ACC GAG
GCC GAG TAC ATC CCG CTG GAC CAG GTC GAC ATC GAT GTG GCC TTC
GAC AAG GGC CTG GAC CGC ATC TTT CTG GTG TCG CCC ATC ACC ATC
TTG CAT GAA ATT GAC GAG GCC AGC CCG CTC TTC GCC ATC AGC CGG
CAG GAC CTG GAG ACG GAC GCC TTC GAT GTG GTC ATC CTG GAA
GGC ATG GTG GAG GCC ACA GCC ATG ACC ACC CAG GCC CGC AGC TCC
TAC CTG GCC AAT GAG ATC CTG TGG GTG TAC CCG TTC ATG CCC GTG
CTC TTC GAG GAG AAG AAC CAG TAC AAG ATT GAC TAC TCG CAC TTC
CAC AAG ACC TAT GAG GTG CCC TCT ACG CCC CGC TGC AGT GCG AAG
GAT CTG GTA GAG AAC AAG TTC CTG CTG CCC AGT GCC AAC TCC TTC
TGC TAT GAG AAG GTC GCC TTC CTG AGC CTG GAC GAG GAG GAT
GAG GCG GAC GGA GAC CAG GAC GGC CGA AGC CGG GAT GGC CTC AGC
CCC CAG GCC AGG CAT GAC TTT GAC AGA CTC CAG GCT GCC GGC GGG
GTC CTG GAG CAG CGG CCC TAC AGA CGG GGG TCA GAG ATC TGA
gccaacctttgcccagacatgcagcactccaccccctggtcgccgggagagggccctcaggggc
ccccgccagctgcttggggtttagttttgaagtatgagtaagggg
cttgggttttgacagcagaacgggcccagttgggcagagggg