Skip to main content

Advertisement

Log in

Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease

  • Dementias-Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Multiple sclerosis and Alzheimer’s disease are fundamentally different diseases. However, recent data suggest that certain mechanisms of neurodegeneration may be shared between the two diseases. Inflammation drives the disease in multiple sclerosis. It is also present in Alzheimer’s disease lesions, where it may have dual functions in amyloid clearance as well as in the propagation of neurodegeneration. In both diseases, degeneration of neurons, axons, and synapses occur on the background of profound mitochondrial injury. Reactive oxygen and nitric oxide intermediates are major candidates for the induction of mitochondrial injury. Radicals are produced through the induction of the respiratory burst in activated microglia, which are present in the lesions of both diseases. In addition, liberation of toxic iron from intracellular stores may augment radical formation. Finally reactive oxygen species are also produced in the course of mitochondrial injury itself. Anti-oxidant and mitochondria protective therapeutic strategies may be beneficial both in multiple sclerosis and Alzheimer’s disease in particular in early stages of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Brück W, Lucchinetti CF, Schmidbauer M, Jellinger K, Lassmann H (2003) Preferential loss of myelin associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropath Exp Neurol 62:25–33

    PubMed  CAS  Google Scholar 

  • Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27:9115–9129

    Article  PubMed  CAS  Google Scholar 

  • Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919

    Article  PubMed  CAS  Google Scholar 

  • Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide mediated mitochondrial damage in the brain: Mechanisms and implication for neurdegenerative diseases. J Neurochem 68:2227–2240

    Article  PubMed  CAS  Google Scholar 

  • Boutajangout A, Quartermain D, Sigurdsson EM (2010) Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 30:16559–16561

    Article  PubMed  CAS  Google Scholar 

  • Bruce-Keller AJ, Gupta S, Parrino TE, Knight AG, Ebenezar PJ, Weidner AM, LeVine H 3rd, Keller JN, Markesbery WR (2010) NOX activity is increased in mild cognitive impairment. Antioxid Redox Signal 12:1371–1382

    Article  PubMed  CAS  Google Scholar 

  • Brück W, Porada Ph, Poser S, Rieckmann P, Hanefeld F, Kretschmer HA, Lassmann H (1995) Monocyte/macrophage differentiation in early multiple sclerosis. Ann Neurol 38:788–796

    Article  PubMed  Google Scholar 

  • Butterfield DA, Bader Lange ML, Sultana R (2010) Involvements oft he lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochem Biophys Acta 1801:924–929

    PubMed  CAS  Google Scholar 

  • Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2010) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol [epub ahead of print]

  • Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A, Cash AD, Obrenovich ME, Perry G, Smith MA (2002) Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 70:357–360

    Article  PubMed  CAS  Google Scholar 

  • Cross AH, Manning PT, Keeling RM, Schmidt RE, Misko TP (1998) Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 88:45–56

    Article  PubMed  CAS  Google Scholar 

  • Dal Bianco A, Bradl M, Frischer J, Kutzelnigg A, Jellinger K, Lassmann H (2008) Multiple sclerosis and Alzheimer’s disease. Ann Neurol 63(2):174–183

    Article  PubMed  Google Scholar 

  • De la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 9:167–181

    Google Scholar 

  • Devi L, Anandatheerthavaranda HK (2010) Mitochondrial trafficking of APP and alpha synuclein: Relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases. Biochem Biophys Acta 1801:11–19

    Google Scholar 

  • Di Filippo M, Chasserini D, Tozzi A, Picconi B, Calabresi P (2010) Mitochondria and the link between neuroinflammation and neurodegeneration. J Alzheimer’s Disease 20:S369–S379

    Google Scholar 

  • Diaz-Sanchez M, Williams K, DeLuca GC, Esiri MM (2006) Protein co-expression with axonal injury in multiple sclerosis plaques. Acta Neuropathol 111:289–299

    Article  PubMed  CAS  Google Scholar 

  • Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  PubMed  CAS  Google Scholar 

  • Eckert A, Schulz KL, Rhein V, Götz J (2010) Convergence of amyloid-beta and tau pathologies on mitochondria in vivo. Mol Neurobiol 41:107–114

    Article  PubMed  CAS  Google Scholar 

  • Frenkel D, Maron R, Burt DS, Weiner HL (2005) Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 115:2423–2433

    Article  PubMed  CAS  Google Scholar 

  • Frischer JM, Bramow S, Dal Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed  Google Scholar 

  • Gandhi KS, McKay FC, Cox M, Riveros C, Armstrong N, Head RN, Vucic S, Williams DW, Stankovich J, Brown M, Danoy P, Stewart GJ, Broadley S, Moscato P, Lechner-Scott J, Scott RJ, Both DR, ANZgene Multiple Sclerosis Genetics Consortium (2010) The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis. Hum Mol Genet 19:2134–2143

    Article  PubMed  CAS  Google Scholar 

  • Giacomini PS, Darlington PJ, Bar-Or A (2009) Emerging multiple sclerosis disease-modifying therapies. Curr Opin Neurol 22:226–232

    Article  PubMed  CAS  Google Scholar 

  • Hallgren B, Sournader P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  • Hallgren B, Sournader P (1960) The non haemin iron in the cerebral cortex in Alzheimer’s disease. J Neurochem 5:307–310

    Article  PubMed  CAS  Google Scholar 

  • Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS, Nagley P (2010) Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimer’s disease 20:S453–S473

    Google Scholar 

  • Hirai K, Aliev G, Nunomura A, Fujioka H, Russel RL, Attwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  • Hochmeister S, Grundtner R, Bauer J, Engelhardt B, Lyck R, Gordon G, Korosec T, Kutzelnigg A, Berger JJ, Bradl M, Bittner RE, Lassmann H (2006) Dysferlin is a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol 65:855–865

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Totova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controoed phase I trial. Lancet 372:216–223

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DM (2008) Moving towards a vaccine. Nature 454:418–420

    Article  PubMed  CAS  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium (IMSGC) (2010) Evidence for polygenic susceptibility to multiple sclerosis—the shape of things to come. Amer J Hum Genet 86:621–625

    Article  Google Scholar 

  • Jellinger K (2006) Alzheimer 100–highlights in the history of Alzheimer research. J Neural Transm 113:1603–1623

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MB (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Trasnm 2:327–340

    Article  CAS  Google Scholar 

  • Lassmann H, Brück W, Lucchinetti C (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218

    Article  PubMed  Google Scholar 

  • Liu JSH, Zhao ML, Brosnan CF, Lee SC (2001) Expression of indicible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Amer J Pathol 158:2057–2066

    Article  CAS  Google Scholar 

  • Mahad D, Ziabreva I, Lassmann H, Turnbull D (2008) Mitochondrial defects in acute multiple sclerosis lesions. Brain 131:1722–1735

    Article  PubMed  Google Scholar 

  • Mahad D, Ziabreva I, Campbell G, Lax N, Hanson PS, Lassmann H, Turnbull DH (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    Article  PubMed  Google Scholar 

  • Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19:33–36

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiologicaö, animal model and clinical studies. Neurobiol Aging 28:639–647

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Rogers J, McGeer EG (2006) Inflammation, anti-inflammatory agents and Alzheimer’s disease: the last 12 years. J Alzheimers Dis 9(3 Suppl):271–276

    PubMed  CAS  Google Scholar 

  • Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    Article  PubMed  CAS  Google Scholar 

  • Montine KS, Olson SJ, Amarnath V, Whetsell WO, Graham DG, Mintine TJ (1997) Immunohistochemical detection of 4-hydroxy-2-nonenal adducts in Alzheimer’s disease is associated with inheritance of APOE4. Amer J Pathol 150:437–443

    CAS  Google Scholar 

  • Montine KS, Reich E, Neely MD, Sidell KR, Olson SJ, Markesbery WR, Montine TJ (1998) Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J Neuropath Exp Neurol 57:415–425

    Article  PubMed  CAS  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochem Biophys Acta 1802:2–10

    PubMed  CAS  Google Scholar 

  • Nicoll JA, Wilkinson D, Holmes C, Steart P, Marham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropath Exp Neurol 60:759–767

    PubMed  CAS  Google Scholar 

  • Nunomura A, Chiba S, Lippa CF, Cras P, Kalaria RN, Takeda A, Honda K, Smith MA, Perry G (2004) Neuronal RNA oxidation is a prominent feature of familial Alzheimer’s disease. Neurobiol Dis 17:108–113

    Article  PubMed  CAS  Google Scholar 

  • Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G (2009) RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 118:151–166

    Article  PubMed  CAS  Google Scholar 

  • Perry G, Sayre LM, Atwood CS, Castellani RJ, Cash AD, Rottkamp CA, Smith MA (2002) The role of iron and copper in the aetiology of neurodegenerative disorders: therapeutic implications. CNS Drugs 16:339–352

    Article  PubMed  CAS  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  PubMed  Google Scholar 

  • Reed TT, Pierce WM, Markesbery WR, Butterfield DA (2009) Proteomic identification of HNE-bound proteins in early Alzheimer disease: Insights into the role of lipid peroxidation in the progression of AD. Brain Res 1274:66–76

    Article  PubMed  CAS  Google Scholar 

  • Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Dröse U, Savaskan E, Czech C, Götz J, Eckert A (2009) Amyloid.beta and tau synergistically impair the oxidative phosphorylation system in tripple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci USA 106:20057–20062

    PubMed  CAS  Google Scholar 

  • Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovaida H, Abramsky O (2006) Taupopathy-like abnormalities and neurological deficits in mice immunized with neuronal tau protein. Arch Neurol 63:1459–1467

    Article  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenl′ko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Fischer MT, Bauer J, Felts PA, Smith KJ, Misu T, Fujihara K, Bradl M, Lassmann H (2010) Inflammation induced by innate immunity in the central nervous system leads to primary astrocyte dysfunction followed by demyelination. Acta Neuropathol 120(2):223–236

    Article  PubMed  CAS  Google Scholar 

  • Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama Y, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S (2000) Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun 273:5–9

    Article  PubMed  CAS  Google Scholar 

  • Te Koppele JM, Lucassen PJ, Sakkee AN, Van Asten JG, Ravid R, Swaab DF, Van Bezooijen CF (1996) 8OHdG levels in brain do not indicate oxidative DNA damage in Alzheimer’s disease. Neurobiol Aging 17:819–826

    Article  PubMed  CAS  Google Scholar 

  • Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, Oda T, Tsuchiya K, Kosaka K (2002) Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol 124:83–92

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  • Trapp B, Stys P (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurology 8:80–291

    Article  Google Scholar 

  • Van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vires HE (2008) Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical Biol Med 45:1729–1737

    Article  Google Scholar 

  • Van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochem Biophys Acta 1812:141–150

    PubMed  Google Scholar 

  • Veto S, Acs P, Bauer J, Lassmann H, Berente Z, Setalo G Jr, Borgulya G, Sumegi B, Komoly S, Gallyas F Jr, Illes Z (2010) Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 133:822–834

    Article  PubMed  Google Scholar 

  • Wiendl H, Hohlfeld R (2009) Multiple sclerosis therapeutics: unexpected outcomes clouding undisputed successes. Neurology 72:1008–1015

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson BL, Landreth GE (2006) The microglial NADPH oxidase complex of oxidative stress in Alzheimer’s disease. J Neuroinflammation 3:30

    Article  PubMed  Google Scholar 

  • Witte ME, Geurts JJ, de Vires HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration. Mitochondrion 10:411–418

    Article  PubMed  CAS  Google Scholar 

  • Ziabreva I, Campbell G, Rist J, Zambonin J, Rorbach J, Wydro MM, Lassmann H, Franklin RJ, Mahad D (2010) Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 58:1827–1837

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lassmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassmann, H. Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J Neural Transm 118, 747–752 (2011). https://doi.org/10.1007/s00702-011-0607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0607-8

Keywords

Navigation