Skip to main content

Advertisement

Log in

Brain Iron Toxicity: Differential Responses of Astrocytes, Neurons, and Endothelial Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2007

Abstract

Iron accumulation or iron overload in brain is commonly associated with neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases, and also plays a role in cellular damage following hemorrhagic stroke and traumatic brain injury. Despite the brain’s highly regulated system for iron utilization and metabolism, these disorders often present following disruptions within iron metabolic pathways. Such dysregulation allows saturation of proteins involved in iron transport and storage, and may cause an increase in free ferrous iron within brain leading to oxidative damage. Not only do astrocytes, neurons, and brain endothelial cells serve unique purposes within the brain, but their individual cell types are equipped with distinct protective mechanisms against iron-induced injury. This review evaluates iron metabolism within the brain under homeostatic and pathological conditions and focuses on the mechanism(s) of brain cellular iron toxicity and differential responses of astrocytes, neurons, and brain vascular endothelial cells to excessive free iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BBB:

Blood-brain barrier

CNS:

Central nervous system

AD:

Alzheimer’s disease

PD:

Parkinson’s disease

CSF:

Cerebrospinal fluid

References

  1. Youdim MB, Ben-Shachar D, Yehuda S, Riederer P (1990) The role of iron in the basal ganglion. Adv Neurol 53:155–162

    PubMed  CAS  Google Scholar 

  2. Hulet SW, Hess EJ, Debinski W, Arosio P, Bruce K, Powers S, Connor JR (1999) Characterization and distribution of ferritin binding sites in the adult mouse brain. J Neurochem 72:868–874

    PubMed  CAS  Google Scholar 

  3. Laskey J, Webb I, Schulman HM, Ponka P (1988) Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis. Exp Cell Res 176:87–95

    PubMed  CAS  Google Scholar 

  4. Connor JR, Pavlick G, Karli D, Menzies SL, Palmer C (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355:111–123

    PubMed  CAS  Google Scholar 

  5. Li D (1998) Effects of iron deficiency on iron distribution and gamma-aminobutyric acid (GABA) metabolism in young rat brain tissues. Hokkaido Igaku Zasshi 73:215–225

    PubMed  CAS  Google Scholar 

  6. Hill JM (1985) Iron concentration reduced in ventral pallidum, globus pallidus, and substantia nigra by GABA-transaminase inhibitor, gamma-vinyl GABA. Brain Res 342:18–25

    PubMed  CAS  Google Scholar 

  7. Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res 1001:108–117

    PubMed  CAS  Google Scholar 

  8. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211

    PubMed  CAS  Google Scholar 

  9. Moos T, Morgan EH (2004) The metabolism of neuronal iron and its pathogenic role in neurological disease: review. Ann N Y Acad Sci 1012:14–26

    PubMed  CAS  Google Scholar 

  10. Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered Brain Metabolism of Iron as a Cause of Neurodegenerative Diseases? J Neurochem 63:793–807

    Article  PubMed  CAS  Google Scholar 

  11. Weaver J, Pollack S, Zhan H (1989) Low molecular weight iron from guinea pig reticulocytes isolated by Sephadex G-25 chromatography. Eur J Haematol 43:321–327

    Article  PubMed  CAS  Google Scholar 

  12. Mulligan M, Althaus B, Linder M (1986) Non-ferritin, non-heme iron pools in rat tissues. Int J Biochem 18:791–798

    PubMed  CAS  Google Scholar 

  13. Bishop GM, Robinson SR (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke. Brain Res 907:175–187

    PubMed  CAS  Google Scholar 

  14. Triggs WJ, Willmore LJ (1984) In vivo lipid peroxidation in rat brain following intracortical Fe2+ injection. J Neurochem 42:976–980

    PubMed  CAS  Google Scholar 

  15. Schenck JF, Zimmerman EA (2004) High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 17:433–445

    PubMed  CAS  Google Scholar 

  16. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    PubMed  CAS  Google Scholar 

  17. Gotz ME, Double K, Gerlach M, Youdim MB, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 1012:193–208

    PubMed  Google Scholar 

  18. Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223

    PubMed  CAS  Google Scholar 

  19. Aisen P (1992) Entry of iron into cells: a new role for the transferrin receptor in modulating iron release from transferrin. Ann Neurol 32:S62–S68

    PubMed  CAS  Google Scholar 

  20. Aisen P, Wessling-Resnick M, Leibold EA (1999) Iron metabolism. Curr Opin Chem Biol 3:200–206

    PubMed  CAS  Google Scholar 

  21. Rolfs A, Hediger MA (1999) Metal ion transporters in mammals: structure, function and pathological implications. J Physiol 518(Pt 1):1–12

    PubMed  CAS  Google Scholar 

  22. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91:9–18

    PubMed  CAS  Google Scholar 

  23. Breuer W, Epsztejn S, Cabantchik ZI (1996) Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett 382:304–308

    PubMed  CAS  Google Scholar 

  24. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5:863–873

    PubMed  CAS  Google Scholar 

  25. Goswami T, Rolfs A, Hediger MA (2002) Iron transport: emerging roles in health and disease. Biochem Cell Biol 80:679–689

    PubMed  CAS  Google Scholar 

  26. Banks WA, Kastin AJ, Fasold MB, Barrera CM, Augereau G (1988) Studies of the slow bidirectional transport of iron and transferrin across the blood-brain barrier. Brain Res Bull 21:881–885

    PubMed  CAS  Google Scholar 

  27. Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res 18:299–304

    PubMed  CAS  Google Scholar 

  28. Moroo I, Ujiie M, Walker BL, Tiong JW, Vitalis TZ, Karkan D, Gabathuler R, Moise AR, Jefferies WA (2003) Identification of a novel route of iron transcytosis across the mammalian blood-brain barrier. Microcirculation 10:457–462

    PubMed  CAS  Google Scholar 

  29. Bartlett W, Li X, Connor J (1991) Expression of transferrin mRNA in the CNS of normal and jimpy mice. J Neurochem 57:318–322

    PubMed  CAS  Google Scholar 

  30. Crowe A, Morgan EH (1992) Iron and transferrin uptake by brain and cerebrospinal fluid in the rat. Brain Res 592:8–16

    PubMed  CAS  Google Scholar 

  31. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:162–163

    PubMed  CAS  Google Scholar 

  32. Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cerebr Blood Flow Metab 23:629–652

    CAS  Google Scholar 

  33. Moos T (1996) Immunohistochemical localization of intraneuronal transferrin receptor immunoreactivity in the adult mouse central nervous system. J Comp Neurol 375:675–692

    PubMed  CAS  Google Scholar 

  34. Ueda F, Raja KB, Simpson RJ, Trowbridge IS, Bradbury MW (1993) Rate of 59Fe uptake into brain and cerebrospinal fluid and the influence thereon of antibodies against the transferrin receptor. J Neurochem 60:106–113

    PubMed  CAS  Google Scholar 

  35. Gutteridge JM (1992) Ferrous ions detected in cerebrospinal fluid by using bleomycin and DNA damage. Clin Sci (Lond) 82:315–320

    CAS  Google Scholar 

  36. Qian ZM, Shen X (2001) Brain iron transport and neurodegeneration. Trends Mol Med 7:103–108

    PubMed  CAS  Google Scholar 

  37. Lash A, Saleem A (1995) Iron metabolism and its regulation. A review Ann Clin Lab Sci 25:20–30

    CAS  Google Scholar 

  38. Burdo JR, Connor JR (2003) Brain iron uptake and homeostatic mechanisms: an overview. Biometals 16:63–75

    PubMed  CAS  Google Scholar 

  39. Seligman PA, Schleicher RB (1999) Comparison of methods used to measure serum iron in the presence of iron gluconate or iron dextran. Clin Chem 45:898–901

    PubMed  CAS  Google Scholar 

  40. Moos T, Morgan EH (1998) Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res 54:486–494

    PubMed  CAS  Google Scholar 

  41. Bradbury MW (1997) Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem 69:443–454

    Article  PubMed  CAS  Google Scholar 

  42. Selim MH, Ratan RR (2004) The role of iron neurotoxicity in ischemic stroke. Ageing Res Rev 3:345–353

    PubMed  CAS  Google Scholar 

  43. Bleijenberg BG, Eijk van HG, Leijnse B (1971) The determination of non-heme iron and transferrin in cerebrospinal fluid. Clin Chim Acta 31:277–281

    PubMed  CAS  Google Scholar 

  44. Del Principe D, Menichelli A, Colistra C (1989) The ceruloplasmin and transferrin system in cerebrospinal fluid of acute leukemia patients. Acta Paediatr Scand 78:327–328

    PubMed  Google Scholar 

  45. Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, Suhara T (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 78:851–855

    PubMed  CAS  Google Scholar 

  46. Sawyer ST, Krantz SB (1986) Transferrin receptor number, synthesis, and endocytosis during erythropoietin-induced maturation of Friend virus-infected erythroid cells. J Biol Chem 261:9187–9195

    PubMed  CAS  Google Scholar 

  47. Lipschitz DA, Cook JD, Finch CA (1974) A clinical evaluation of serum ferritin as an index of iron stores. N Engl J Med 290:1213–1216

    Article  PubMed  CAS  Google Scholar 

  48. Haerer AF (1971) Citrate and alpha-ketoglutarate in cerebrospinal fluid and blood. Neurology 21:1059–1065

    PubMed  CAS  Google Scholar 

  49. Spector R, Lorenzo AV (1973) Ascorbic acid homeostasis in the central nervous system. Am J Physiol 225:757–763

    PubMed  CAS  Google Scholar 

  50. Mukhopadhyay CK, Attieh ZK, Fox PL (1998) Role of ceruloplasmin in cellular iron uptake. Science 279:714–717

    PubMed  CAS  Google Scholar 

  51. Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaissa M, Spik G, Cecchelli R, Pierce A (1999) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274:7011–7017

    PubMed  CAS  Google Scholar 

  52. Terent A, Hallgren R, Venge P, Bergstrom K (1981) Lactoferrin, lysozyme, and beta 2-microglobulin in cerebrospinal fluid. Elevated levels in patients with acute cerebrovascular lesions as indices of inflammation. Stroke 12:40–46

    PubMed  CAS  Google Scholar 

  53. Morris C, Candy J, Keith A, Oakley A, Taylor G, Pullen R, Bloxham C, Gocht A, Edwardson J (1992) Brain iron homeostasis. J Inorg Biochem 47:257–265

    PubMed  CAS  Google Scholar 

  54. Koeppen AH (1995) The history of iron in the brain. J Neurol Sci 134(Suppl):1–9

    PubMed  CAS  Google Scholar 

  55. Wixom RL, Prutkin L, Munro HN (1980) Hemosiderin: nature, formation, and significance. Int Rev Exp Pathol 22:193–225

    PubMed  CAS  Google Scholar 

  56. Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    PubMed  CAS  Google Scholar 

  57. Testa U (2002) Ferritin., in Proteins of Iron Metabolism, CRC Press, Boca Raton. pp449–538

    Google Scholar 

  58. Iancu TC (1992) Ferritin and hemosiderin in pathological tissues. Electron Microsc Rev 5:209–229

    PubMed  CAS  Google Scholar 

  59. Nunez-Millacura C, Tapia V, Munoz P, Maccioni RB, Nunez MT (2002) An oxidative stress-mediated positive-feedback iron uptake loop in neuronal cells. J Neurochem 82:240–248

    PubMed  CAS  Google Scholar 

  60. Jeong SY, David S (2003) Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system. J Biol Chem 278:27144–27148

    PubMed  CAS  Google Scholar 

  61. Aguirre P, Mena N, Tapia V, Arredondo M, and Nunez, MT (2005) Iron homeostasis in neuronal cells: a role for IREG1. BMC Neurosci. 6:article 3

  62. Baldwin DA, Jenny ER, Aisen P (1984) The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide. J Biol Chem 259:13391–13394

    PubMed  CAS  Google Scholar 

  63. Connor JR, Menzies SL, Burdo JR, Boyer PJ (2001) Iron and iron management proteins in neurobiology. Pediatr Neurol 25:118–129

    PubMed  CAS  Google Scholar 

  64. Siesjo BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211

    PubMed  CAS  Google Scholar 

  65. Baader SL, Bruchelt G, Carmine TC, Lode HN, Rieth AG, Niethammer D (1994) Ascorbic-acid-mediated iron release from cellular ferritin and its relation to the formation of DNA strand breaks in neuroblastoma cells. J Cancer Res Clin Oncol 120:415–421

    PubMed  CAS  Google Scholar 

  66. Ying W, Han SK, Miller JW, Swanson RA (1999) Acidosis potentiates oxidative neuronal death by multiple mechanisms. J Neurochem 73:1549–1556

    PubMed  CAS  Google Scholar 

  67. Breuer W, Greenberg E, Cabantchik ZI (1997) Newly delivered transferrin iron and oxidative cell injury. FEBS Lett 403:213–219

    PubMed  CAS  Google Scholar 

  68. Cable EE, Connor JR, Isom HC (1998) Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron. Am J Pathol 152:781–792

    PubMed  CAS  Google Scholar 

  69. Rauhala P, Chiueh CC (2000) Effects of atypical antioxidative agents, S-nitrosoglutathione and manganese, on brain lipid peroxidation induced by iron leaking from tissue disruption. Ann N Y Acad Sci 899:238–254

    Article  PubMed  CAS  Google Scholar 

  70. Halliwell BG, Gutteridge JMC (eds) (1998) Free Radicals in Biology and Medicine, 3rd Ed. Oxford University Press, Oxford, p 729

    Google Scholar 

  71. Ward RJ, Kuhn LC, Kaldy P, Florence A, Peters TJ, Crichton RR (1994) Control of cellular iron homeostasis by iron-responsive elements In vivo. Eur J Biochem 220:927–931

    PubMed  CAS  Google Scholar 

  72. Alexandrov PN, Zhao Y, Pogue AI, Tarr MA, Kruck TP, Percy ME, Cui JG, Lukiw WJ (2005) Synergistic effects of iron and aluminum on stress-related gene expression in primary human neural cells. J Alz Dis 8:117–127

    CAS  Google Scholar 

  73. Varani J, Fligiel SE, Till GO, Kunkel RG, Ryan US, Ward PA (1985) Pulmonary endothelial cell killing by human neutrophils. Possible involvement of hydroxyl radical Lab Invest 53:656–663

    CAS  Google Scholar 

  74. Smith C, Mitchinson MJ, Aruoma OI, Halliwell B (1992) Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. Biochem J 286(Pt 3):901–905

    PubMed  CAS  Google Scholar 

  75. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267:18148–18153

    PubMed  CAS  Google Scholar 

  76. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    PubMed  CAS  Google Scholar 

  77. Aracena P, Tang W, Hamilton SL, Hidalgo C (2005) Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels. Antioxid Redox Signal 7:870–881

    PubMed  CAS  Google Scholar 

  78. Oubidar M, Marie C, Mossiat C, Bralet J (1996) Effects of increasing intracellular reactive iron level on cardiac function and oxidative injury in the isolated rat heart. J Mol Cell Cardiol 28:1769–1776

    PubMed  CAS  Google Scholar 

  79. Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W (2003) Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and ferulic acid. Eur J Pharmacol 467:41–47

    PubMed  CAS  Google Scholar 

  80. Willmore LJ, Rubin JJ (1982) Formation of malonaldehyde and focal brain edema induced by subpial injection of FeCl2 into rat isocortex. Brain Res 246:113–119

    PubMed  CAS  Google Scholar 

  81. Zhang Y, Tatsuno T, Carney JM, Mattson MP (1993) Basic FGF, NGF, and IGFs protect hippocampal and cortical neurons against iron-induced degeneration. J Cereb Blood Flow Metab 13:378–388

    PubMed  Google Scholar 

  82. Link G, Saada A, Pinson A, Konijn AM, Hershko C (1998) Mitochondrial respiratory enzymes are a major target of iron toxicity in rat heart cells. J Lab Clin Med 131:466–474

    PubMed  CAS  Google Scholar 

  83. Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G, Mangiameli A, Pennisi G, Stella AM, Butterfield DA (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233:145–162

    PubMed  CAS  Google Scholar 

  84. Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, Gerlach M, Osawa T, Riederer P, Naoi M (2006) Neuromelanin induces oxidative stress in mitochondria through release of iron: mechanism behind the inhibition of 26S proteasome. J Neural Transm 113:633–644

    PubMed  CAS  Google Scholar 

  85. Robb SJ, Robb-Gaspers LD, Scaduto RC Jr, Thomas AP, Connor JR (1999) Influence of calcium and iron on cell death and mitochondrial function in oxidatively stressed astrocytes. J Neurosci Res 55:674–686

    PubMed  CAS  Google Scholar 

  86. Smith SR, Cooperman S, Lavaute T, Tresser N, Ghosh M, Meyron-Holtz E, Land W, Ollivierre H, Jortner B, Switzer R 3rd, Messing A, Rouault TA (2004) Severity of neurodegeneration correlates with compromise of iron metabolism in mice with iron regulatory protein deficiencies. Ann N Y Acad Sci 1012:65–83

    PubMed  CAS  Google Scholar 

  87. Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    PubMed  CAS  Google Scholar 

  88. Yamamoto A, Shin R-W, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2003) Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 86:1568–1568

    CAS  Google Scholar 

  89. Bishop GM, Robinson SR, Liu Q, Perry G, Atwood CS, Smith MA (2002) Iron: a pathological mediator of Alzheimer disease? Dev Neurosci 24:184–187

    PubMed  CAS  Google Scholar 

  90. Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, Sharp FR (1998) Heme oxygenase-1 is induced in glia throughout brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 18:257–273

    PubMed  CAS  Google Scholar 

  91. Vayenas DV, Repanti M, Vassilopoulos A, Papanastasiou DA (1998) Influence of iron overload on manganese, zinc, and copper concentration in rat tissues In vivo: study of liver, spleen, and brain. Int J Clin Lab Res 28:183–186

    PubMed  CAS  Google Scholar 

  92. Castellani RJ, Smith MA, Nunomura A, Harris PL, Perry G (1999) Is increased redox-active iron in Alzheimer disease a failure of the copper-binding protein ceruloplasmin? Free Radic Biol Med 26:1508–1512

    PubMed  CAS  Google Scholar 

  93. Thompson KJ, Shoham S, Connor JR (2001) Iron and neurodegenerative disorders. Brain Res Bull 55:155–164

    PubMed  CAS  Google Scholar 

  94. Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, Tabaton M, Perry G (1998) Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215

    Article  PubMed  CAS  Google Scholar 

  95. Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, Maggio JE (1993) Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem 61:1171–1174

    PubMed  CAS  Google Scholar 

  96. Rogers JT, Leiter LM, McPhee J, Cahill CM, Zhan SS, Potter H, Nilsson LN (1999) Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5’-untranslated region sequences. J Biol Chem 274:6421–6431

    PubMed  CAS  Google Scholar 

  97. Connor JR, Menzies SL, St Martin SM, Mufson EJ (1992) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83

    PubMed  CAS  Google Scholar 

  98. Sayre LM, Perry G, Atwood CS, Smith MA (2000) The role of metals in neurodegenerative diseases. Cell Mol Biol (Noisy-le-grand) 46:731–741

    CAS  Google Scholar 

  99. Ruprecht-Dorfler P, Berg D, Tucha O, Benz P, Meier-Meitinger M, Alders GL, Lange KW, Becker G (2003) Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson’s disease. Neuroimage 18:416–422

    PubMed  Google Scholar 

  100. Griffiths PD, Dobson BR, Jones GR, Clarke DT (1999) Iron in the basal ganglia in Parkinson’s disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. Brain 122(Pt 4):667–673

    PubMed  Google Scholar 

  101. Mohanakumar KP, de Bartolomeis A, Wu RM, Yeh KJ, Sternberger LM, Peng SY, Murphy DL, Chiueh CC (1994) Ferrous-citrate complex and nigral degeneration: evidence for free-radical formation and lipid peroxidation. Ann N Y Acad Sci 738:392–399

    Article  PubMed  CAS  Google Scholar 

  102. Sengstock GJ, Olanow CW, Menzies RA, Dunn AJ, Arendash GW (1993) Infusion of iron into the rat substantia nigra: nigral pathology and dose-dependent loss of striatal dopaminergic markers. J Neurosci Res 35:67–82

    PubMed  CAS  Google Scholar 

  103. Sziraki I, Mohanakumar KP, Rauhala P, Kim HG, Yeh KJ, Chiueh CC (1998) Manganese: a transition metal protects nigrostriatal neurons from oxidative stress in the iron-induced animal model of parkinsonism. Neuroscience 85:1101–1111

    PubMed  CAS  Google Scholar 

  104. Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MB (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74:199–205

    PubMed  CAS  Google Scholar 

  105. Moos T, Morgan EH (2000) Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 20:77–95

    PubMed  CAS  Google Scholar 

  106. Becker G, Seufert J, Bogdahn U, Reichmann H, Reiners K (1995) Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 45:182–184

    PubMed  CAS  Google Scholar 

  107. Berg D, Hochstrasser H, Schweitzer KJ, Riess O (2006) Disturbance of iron metabolism in Parkinson’s disease – ultrasonography as a biomarker. Neurotox Res 9:1–13

    Article  PubMed  CAS  Google Scholar 

  108. Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC (2003) Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem 86:1142–1148

    Article  PubMed  CAS  Google Scholar 

  109. Jurma OP, Hom DG, Andersen JK (1997) Decreased glutathione results in calcium-mediated cell death in PC12. Free Radic Biol Med 23:1055–1066

    PubMed  CAS  Google Scholar 

  110. Levenson CW (2005) Trace metal regulation of neuronal apoptosis: from genes to behavior. Physiol Behav 86:399–406

    PubMed  CAS  Google Scholar 

  111. Takeda A, Takatsuka K, Connor JR, Oku N (2002) Abnormal iron delivery to the bone marrow in neonatal hypotransferrinemic mice. Biometals 15:33–36

    PubMed  CAS  Google Scholar 

  112. Borie C, Gasparini F, Verpillat P, Bonnet AM, Agid Y, Hetet G, Brice A, Durr A, Grandchamp B (2002) Association study between iron-related genes polymorphisms and Parkinson’s disease. J Neurol 249:801–804

    PubMed  Google Scholar 

  113. Moalem S, Percy ME, Andrews DF, Kruck TP, Wong S, Dalton AJ, Mehta P, Fedor B, Warren AC (2000) Are hereditary hemochromatosis mutations involved in Alzheimer disease? Am J Med Genet 93:58–66

    PubMed  CAS  Google Scholar 

  114. Levy YS, Streifler JY, Panet H, Melamed E, Offen D (2002) Hemin-induced apoptosis in PC12 and neuroblastoma cells: implications for local neuronal death associated with intracerebral hemorrhage. Neurotox Res 4:609–616

    PubMed  CAS  Google Scholar 

  115. Kajikawa H, Ohta T, Yoshikawa Y, Funatsu N, Yamamoto M, Someda K (1979) Cerebral vasospasm and hemoglobins–clinical and experimental studies. Neurol Med Chir (Tokyo) 19:61–71

    Article  CAS  Google Scholar 

  116. Regan RF, Panter SS (1993) Neurotoxicity of hemoglobin in cortical cell culture. Neurosci Lett 153:219–222

    PubMed  CAS  Google Scholar 

  117. Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    PubMed  CAS  Google Scholar 

  118. Wan S, Hua Y, Keep RF, Hoff JT, Xi G (2006) Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl 96:199–202

    Article  PubMed  CAS  Google Scholar 

  119. Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G (2003) Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 34:2964–2969

    PubMed  CAS  Google Scholar 

  120. Hua Y, Nakamura T, Keep RF, Wu J, Schallert T, Hoff JT, Xi G (2006) Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg 104:305–312

    PubMed  CAS  Google Scholar 

  121. Koeppen AH, Dickson AC, McEvoy JA (1995) The cellular reactions to experimental intracerebral hemorrhage. J Neurol Sci 134(Suppl):102–112

    PubMed  Google Scholar 

  122. Xue M, Del Bigio MR (2000) Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death. Neurosci Lett 283:230–232

    PubMed  CAS  Google Scholar 

  123. Kress GJ, Dineley KE, Reynolds IJ (2002) The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 22:5848–5855

    PubMed  CAS  Google Scholar 

  124. Ke ZJ, Gibson GE (2004) Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism. Neurochem Int 45:361–369

    PubMed  CAS  Google Scholar 

  125. Ferguson M, Dalve-Endres AM, McRee RC, Langlais PJ (1999) Increased mast cell degranulation within thalamus in early pre-lesion stages of an experimental model of Wernicke’s encephalopathy. J Neuropathol Exp Neurol 58:773–783

    PubMed  CAS  Google Scholar 

  126. Norenberg MD (1996) Reactive Astrocytosis. In: Aschner M, Kimelberg HK (eds) The Role of Glia in Neurotoxicity. CRC Press, Boca Raton, pp 93–100

    Google Scholar 

  127. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    PubMed  CAS  Google Scholar 

  128. Landis DM (1994) The early reactions of non-neuronal cells to brain injury. Annu Rev Neurosci 17:133–151

    PubMed  CAS  Google Scholar 

  129. Dehouck MP, Meresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801

    PubMed  CAS  Google Scholar 

  130. Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36:179–194

    PubMed  CAS  Google Scholar 

  131. Ullian EM, Christopherson KS, Barres BA (2004) Role for glia in synaptogenesis. Glia 47:209–216

    PubMed  Google Scholar 

  132. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    PubMed  CAS  Google Scholar 

  133. Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJ (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53

    Article  PubMed  CAS  Google Scholar 

  134. Aschner M (1996) The functional significance of brain metallothioneins. Faseb J 10:1129–1136

    PubMed  CAS  Google Scholar 

  135. Raps SP, Lai JC, Hertz L, Cooper AJ (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res 493:398–401

    PubMed  CAS  Google Scholar 

  136. Oide T, Yoshida K, Kaneko K, Ohta M, Arima K (2006) Iron overload and antioxidative role of perivascular astrocytes in aceruloplasminemia. Neuropathol Appl Neurobiol 32:170–176

    PubMed  CAS  Google Scholar 

  137. Sawada J, Kikuchi Y, Shibutani M, Mitsumori K, Inoue K, Kasahara T (1994) Induction of metallothionein in astrocytes by cytokines and heavy metals. Biol Signals 3:157–168

    PubMed  CAS  Google Scholar 

  138. Wang XS, Ong WY, Connor JR (2001) A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J Neurocytol 30:353–360

    PubMed  Google Scholar 

  139. Hoepken HH, Korten T, Robinson SR, Dringen R (2004) Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem 88:1194–1202

    PubMed  CAS  Google Scholar 

  140. Regan RF, Kumar N, Gao F, Guo Y (2002) Ferritin induction protects cortical astrocytes from heme-mediated oxidative injury. Neuroscience 113:985–994

    PubMed  CAS  Google Scholar 

  141. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    PubMed  CAS  Google Scholar 

  142. Erikson KM, Aschner M (2006) Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. Neurotoxicol 27:125–130

    CAS  Google Scholar 

  143. Iwata-Ichikawa E, Kondo Y, Miyazaki I, Asanuma M, Ogawa N (1999) Glial cells protect neurons against oxidative stress via transcriptional up-regulation of the glutathione synthesis. J Neurochem 72:2334–2344

    PubMed  CAS  Google Scholar 

  144. Schroeter ML, Mertsch K, Giese H, Muller S, Sporbert A, Hickel B, Blasig IE (1999) Astrocytes enhance radical defence in capillary endothelial cells constituting the blood-brain barrier. FEBS Lett 449:241–244

    PubMed  CAS  Google Scholar 

  145. Wagner KR, Broderick JP (2001) Hemorrhagic stroke: pathophysiological mechanisms and neuroprotective treatments. In: Wagner KR, Bryan DW, Hall CL, Courten-Myers de GM, Broderick JP (eds) Neuroprotection. Prominent Press, Scottsdale, AZ, pp 471–508

    Google Scholar 

  146. Williams K, Wilson MA, Bressler J (2000) Regulation and developmental expression of the divalent metal-ion transporter in the rat brain. Cell Mol Biol (Noisy-le-grand) 46:563–571

    CAS  Google Scholar 

  147. Grady MS, Charleston JS, Maris D, Witgen BM, Lifshitz J (2003) Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: analysis by stereological estimation. J Neurotrauma 20:929–941

    PubMed  Google Scholar 

  148. Hill SJ, Barbarese E, McIntosh TK (1996) Regional heterogeneity in the response of astrocytes following traumatic brain injury in the adult rat. J Neuropathol Exp Neurol 55:1221–1229

    PubMed  CAS  Google Scholar 

  149. Zhao X, Ahram A, Berman RF, Muizelaar JP, Lyeth BG (2003) Early loss of astrocytes after experimental traumatic brain injury. Glia 44:140–152

    PubMed  Google Scholar 

  150. Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939

    PubMed  CAS  Google Scholar 

  151. Tani M, Glabinski AR, Tuohy VK, Stoler MH, Estes ML, Ransohoff RM (1996) In situ hybridization analysis of glial fibrillary acidic protein mRNA reveals evidence of biphasic astrocyte activation during acute experimental autoimmune encephalomyelitis. Am J Pathol 148:889–896

    PubMed  CAS  Google Scholar 

  152. Van der Schyf CJ, Geldenhuys WJ, Youdim MB (2006) Multifunctional neuroprotective drugs for the treatment of cognitive and movement impairment disorders, including Alzheimer’s and Parkinson’s diseases. Drugs Fut 31:447–460

    Google Scholar 

  153. Van der Schyf CJ, Gal S, Geldenhuys WJ, Youdim MB (2006) Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin Investig Drugs 15:873–886

    PubMed  Google Scholar 

  154. Van der Schyf CJ, Geldenhuys WJ, Youdim MB (2006) Multifunctional drugs with different CNS targets for neuropsychiatric disorders. J Neurochem 99:1033–1048

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. Van der Schyf.

Additional information

Special issue dedicated to Dr. Moussa Youdim.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-007-9488-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaasch, J.A., Lockman, P.R., Geldenhuys, W.J. et al. Brain Iron Toxicity: Differential Responses of Astrocytes, Neurons, and Endothelial Cells. Neurochem Res 32, 1196–1208 (2007). https://doi.org/10.1007/s11064-007-9290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9290-4

Keywords

Navigation