Skip to main content

Advertisement

Log in

Cancer Stem Cells: The Final Frontier for Glioma Virotherapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSC) are a very small subset of all cancer cells and possess characteristics very similar to normal stem cells, in particular, the capacity for self-renewal, multipotency and relative quiescence. These chemo- and radiation resistant cells are responsible for maintaining tumor volume leading to therapy failure and recurrence. In glioblastoma multiforme (GBM), the most common primary intracranial malignancy, glioma stem cells have been implicated as one of the key players in treatment failure. Many novel treatment modalities are being investigated to specifically target this small group of cells. In this review, we shed light on one such targeted therapy, specifically, oncolytic virotherapy, and review the literature to highlight the advances and challenges in designing effective oncolytic virotherapy for glioma stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nowell, P. C. (1993). Foundations in cancer research. Chromosomes and cancer: the evolution of an idea. Advances in Cancer Research, 62, 1–17.

    Article  CAS  PubMed  Google Scholar 

  2. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  CAS  PubMed  Google Scholar 

  3. Stupp, R., Mason, W. P., van den Bent, M. J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine, 352, 987–996.

    Article  CAS  PubMed  Google Scholar 

  4. Hamburger, A. W., & Salmon, S. E. (1977). Primary bioassay of human tumor stem cells. Science, 197, 461–463.

    Article  CAS  PubMed  Google Scholar 

  5. Stupp, R., & Hegi, M. E. (2007). Targeting brain-tumor stem cells. Nature Biotechnology, 25, 193–194.

    Article  CAS  PubMed  Google Scholar 

  6. Till, J. E., & Mc, C. E. (1961). A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiation Research, 14, 213–222.

    Article  CAS  PubMed  Google Scholar 

  7. Bruce, W. R., & Van Der Gaag, H. (1963). A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature, 199, 79–80.

    Article  CAS  PubMed  Google Scholar 

  8. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    Article  CAS  PubMed  Google Scholar 

  10. Li, C., Heidt, D. G., Dalerba, P., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  11. Prince, M. E., Sivanandan, R., Kaczorowski, A., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978.

    Article  CAS  PubMed  Google Scholar 

  12. Chan, K. S., Espinosa, I., Chao, M., et al. (2009). Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 14016–14021.

    Article  CAS  PubMed  Google Scholar 

  13. Fang, D., Nguyen, T. K., Leishear, K., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65, 9328–9337.

    Article  CAS  PubMed  Google Scholar 

  14. Bapat, S. A., Mali, A. M., Koppikar, C. B., & Kurrey, N. K. (2005). Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Research, 65, 3025–3029.

    CAS  PubMed  Google Scholar 

  15. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews Cancer, 8, 755–768.

    Article  CAS  PubMed  Google Scholar 

  16. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445, 111–115.

    Article  CAS  PubMed  Google Scholar 

  17. Hermann, P. C., Huber, S. L., Herrler, T., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323.

    Article  CAS  PubMed  Google Scholar 

  18. Eramo, A., Lotti, F., Sette, G., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differention, 15, 504–514.

    Article  CAS  Google Scholar 

  19. Tirino, V., Desiderio, V., d’Aquino, R., et al. (2008). Detection and characterization of cd133+ cancer stem cells in human solid tumours. Public Library of Science ONE, 3, e3469.

    PubMed  Google Scholar 

  20. Singh, S. K., Clarke, I. D., Terasaki, M., et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Research, 63, 5821–5828.

    CAS  PubMed  Google Scholar 

  21. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  22. Dahlstrand, J., Collins, V. P., & Lendahl, U. (1992). Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Research, 52, 5334–5341.

    CAS  PubMed  Google Scholar 

  23. Ignatova, T. N., Kukekov, V. G., Laywell, E. D., Suslov, O. N., Vrionis, F. D., & Steindler, D. A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia, 39, 193–206.

    Article  PubMed  Google Scholar 

  24. Uchida, N., Buck, D. W., He, D., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 14720–14725.

    Article  CAS  PubMed  Google Scholar 

  25. Miraglia, S., Godfrey, W., Yin, A. H., et al. (1997). A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood, 90, 5013–5021.

    CAS  PubMed  Google Scholar 

  26. Singh, S. K., Hawkins, C., Clarke, I. D., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432, 396–401.

    Article  CAS  PubMed  Google Scholar 

  27. Eramo, A., Ricci-Vitiani, L., Zeuner, A., et al. (2006). Chemotherapy resistance of glioblastoma stem cells. Cell Death Differention, 13, 1238–1241.

    Article  CAS  Google Scholar 

  28. Kang, M. K., & Kang, S. K. (2007). Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells and Development, 16, 837–847.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, G., Yuan, X., Zeng, Z., et al. (2006). Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Molecular Cancer, 5, 67.

    Article  CAS  PubMed  Google Scholar 

  30. Hegi, M. E., Diserens, A. C., Gorlia, T., et al. (2005). Mgmt gene silencing and benefit from temozolomide in glioblastoma. New England Journal of Medicine, 352, 997–1003.

    Article  CAS  PubMed  Google Scholar 

  31. Bi, C. L., Fang, J. S., Chen, F. H., Wang, Y. J., & Wu, J. (2007). chemoresistance of cd133(+) tumor stem cells from human brain glioma. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 32, 568–573.

    CAS  PubMed  Google Scholar 

  32. Salmaggi, A., Boiardi, A., Gelati, M., et al. (2006). Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia, 54, 850–860.

    Article  PubMed  Google Scholar 

  33. Bao, S., Wu, Q., McLendon, R. E., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444, 756–760.

    Article  CAS  PubMed  Google Scholar 

  34. Parker, J. N., Gillespie, G. Y., Love, C. E., Randall, S., Whitley, R. J., & Markert, J. M. (2000). Engineered herpes simplex virus expressing il-12 in the treatment of experimental murine brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 97, 2208–2213.

    Article  CAS  PubMed  Google Scholar 

  35. Fulci, G., Breymann, L., Gianni, D., et al. (2006). Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 12873–12878.

    Article  CAS  PubMed  Google Scholar 

  36. Freeman, A. I., Zakay-Rones, Z., Gomori, J. M., et al. (2006). Phase I/II trial of intravenous ndv-huj oncolytic virus in recurrent glioblastoma multiforme. Molecular Therapy, 13, 221–228.

    Article  CAS  PubMed  Google Scholar 

  37. Bar-Eli, N., Giloh, H., Schlesinger, M., & Zakay-Rones, Z. (1996). Preferential cytotoxic effect of newcastle disease virus on lymphoma cells. Journal of Cancer Research and Clinical Oncology, 122, 409–415.

    Article  CAS  PubMed  Google Scholar 

  38. Cassel, W. A., & Garrett, R. E. (1965). Newcastle disease virus as an antineoplastic agent. Cancer, 18, 863–868.

    Article  CAS  PubMed  Google Scholar 

  39. Guha, A., Dashner, K., Black, P. M., Wagner, J. A., & Stiles, C. D. (1995). Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. International Journal of Cancer, 60, 168–173.

    Article  CAS  Google Scholar 

  40. Libermann, T. A., Nusbaum, H. R., Razon, N., et al. (1985). Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature, 313, 144–147.

    Article  CAS  PubMed  Google Scholar 

  41. Coffey, M. C., Strong, J. E., Forsyth, P. A., & Lee, P. W. (1998). Reovirus therapy of tumors with activated ras pathway. Science, 282, 1332–1334.

    Article  CAS  PubMed  Google Scholar 

  42. Forsyth, P., Roldan, G., George, D., et al. (2008). A phase I trial of intratumoral administration of reovirus in patients with histologically confirmed recurrent malignant gliomas. Molecular Therapy, 16, 627–632.

    Article  CAS  PubMed  Google Scholar 

  43. Markovitz, N. S., Baunoch, D., & Roizman, B. (1997). The range and distribution of murine central nervous system cells infected with the gamma(1)34.5- mutant of herpes simplex virus 1. The Journal of Virology, 71, 5560–5569.

    CAS  Google Scholar 

  44. Mineta, T., Rabkin, S. D., Yazaki, T., Hunter, W. D., & Martuza, R. L. (1995). Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Medicine, 1, 938–943.

    Article  CAS  PubMed  Google Scholar 

  45. Markert, J. M., Medlock, M. D., Rabkin, S. D., et al. (2000). Conditionally replicating herpes simplex virus mutant, g207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy, 7, 867–874.

    Article  CAS  PubMed  Google Scholar 

  46. Markert, J. M., Liechty, P. G., Wang, W., et al. (2008). Phase ib trial of mutant herpes simplex virus g207 inoculated pre-and post-tumor resection for recurrent GBM. Molecular Therapy, 17, 199–207.

    Article  CAS  PubMed  Google Scholar 

  47. Chung, R. Y., Saeki, Y., & Chiocca, E. A. (1999). B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. The Journal of Virology, 73, 7556–7564.

    CAS  Google Scholar 

  48. Glorioso, J. C., & Fink, D. J. (2004). Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. Annual Review of Microbiology, 58, 253–271.

    Article  CAS  PubMed  Google Scholar 

  49. Rainov, N. G. (2000). A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Human Gene Therapy, 11, 2389–2401.

    Article  CAS  PubMed  Google Scholar 

  50. Phuong, L. K., Allen, C., Peng, K. W., et al. (2003). Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Research, 63, 2462–2469.

    CAS  PubMed  Google Scholar 

  51. Puumalainen, A. M., Vapalahti, M., Agrawal, R. S., et al. (1998). Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Human Gene Therapy, 9, 1769–1774.

    Article  CAS  PubMed  Google Scholar 

  52. Lang, F. F., Bruner, J. M., Fuller, G. N., et al. (2003). Phase I trial of adenovirus-mediated p53 gene therapy for recurrent glioma: biological and clinical results. Journal of Clinical Oncology, 21, 2508–2518.

    Article  CAS  PubMed  Google Scholar 

  53. Heise, C., Hermiston, T., Johnson, L., et al. An adenovirus e1a mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nature Medicine, 6, 1134–1139.

  54. Alemany, R., Balague, C., & Curiel, D. T. (2000). Replicative adenoviruses for cancer therapy. Nature Biotechnology, 18, 723–727.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, H., Conrad, C., Fueyo, J., Gomez-Manzano, C., & Liu, T.J. Oncolytic adenoviruses for malignant glioma therapy. Frontiers in Bioscience, 8, d577–588.

  56. Lin, E., & Nemunaitis, J. (2004). Oncolytic viral therapies. Cancer Gene Therapy, 11, 643–664.

    Article  CAS  PubMed  Google Scholar 

  57. Lamfers, M.L., Grill, J., Dirven, C.M., et al. Potential of the conditionally replicative adenovirus ad5-delta24rgd in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Research, 62, 5736–5742.

  58. Suzuki, K., Fueyo, J., Krasnykh, V., Reynolds, P. N., Curiel, D. T., & Alemany, R. (2001). A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clinical Cancer Research, 7, 120–126.

    CAS  PubMed  Google Scholar 

  59. Fueyo, J., Gomez-Manzano, C., Alemany, R., et al. (2000). A mutant oncolytic adenovirus targeting the RB pathway produces anti-glioma effect in vivo. Oncogene, 19, 2–12.

    Article  CAS  PubMed  Google Scholar 

  60. Bischoff, J. R., Kirn, D. H., Williams, A., et al. (1996). An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science, 274, 373–376.

    Article  CAS  PubMed  Google Scholar 

  61. Khuri, F. R., Nemunaitis, J., Ganly, I., et al. (2000). A controlled trial of intratumoral onyx-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Medicine, 6, 879–885.

    Article  CAS  PubMed  Google Scholar 

  62. Heise, C., Sampson-Johannes, A., Williams, A., McCormick, F., Von Hoff, D. D., & Kirn, D. H. (1997). Onyx-015, an e1b gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Medicine, 3, 639–645.

    Article  CAS  PubMed  Google Scholar 

  63. Fults, D., Brockmeyer, D., Tullous, M. W., Pedone, C. A., & Cawthon, R. M. (1992). P53 mutation and loss of heterozygosity on chromosomes 17 and 10 during human astrocytoma progression. Cancer Research, 52, 674–679.

    CAS  PubMed  Google Scholar 

  64. Ueki, K., Ono, Y., Henson, J. W., Efird, J. T., von Deimling, A., & Louis, D. N. (1996). Cdkn2/p16 or rb alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Research, 56, 150–153.

    CAS  PubMed  Google Scholar 

  65. Chiocca, E. A., Abbed, K. M., Tatter, S., et al. (2004). A phase i open-label, dose-escalation, multi-institutional trial of injection with an e1b-attenuated adenovirus, onyx-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Molecular Therapy, 10, 958–966.

    Article  CAS  PubMed  Google Scholar 

  66. van Beusechem, V. W., Grill, J., Mastenbroek, D. C., et al. (2002). Efficient and selective gene transfer into primary human brain tumors by using single-chain antibody-targeted adenoviral vectors with native tropism abolished. The Journal of Virology, 76, 2753–2762.

    Article  CAS  Google Scholar 

  67. Miller, C. R., Buchsbaum, D. J., Reynolds, P. N., et al. (1998). Differential susceptibility of primary and established human glioma cells to adenovirus infection: Targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Research, 58, 5738–5748.

    CAS  PubMed  Google Scholar 

  68. Fueyo, J., Alemany, R., Gomez-Manzano, C., et al. (2003). Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. Journal of the National Cancer Institute, 95, 652–660.

    Article  CAS  PubMed  Google Scholar 

  69. Bergelson, J. M., Cunningham, J. A., Droguett, G., et al. (1997). Isolation of a common receptor for coxsackie b viruses and adenoviruses 2 and 5. Science, 275, 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  70. Tomko, R. P., Xu, R., & Philipson, L. (1997). Hcar and mcar: The human and mouse cellular receptors for subgroup c adenoviruses and group b coxsackieviruses. Proceedings of the National Academy of Sciences of the United States of America, 94, 3352–3356.

    Article  CAS  PubMed  Google Scholar 

  71. Asaoka, K., Tada, M., Sawamura, Y., Ikeda, J., & Abe, H. (2000). Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the coxsackievirus and adenovirus receptor. Journal of Neurosurgery, 92, 1002–1008.

    Article  CAS  PubMed  Google Scholar 

  72. Grill, J., Van Beusechem, V. W., Van Der Valk, P., et al. (2001). Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids. Clinical Cancer Research, 7, 641–650.

    CAS  PubMed  Google Scholar 

  73. Wong, A. J., Bigner, S. H., Bigner, D. D., Kinzler, K. W., Hamilton, S. R., & Vogelstein, B. (1987). Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proceedings of the National Academy of Sciences of the United States of America, 84, 6899–6903.

    Article  CAS  PubMed  Google Scholar 

  74. Ekstrand, A. J., James, C. D., Cavenee, W. K., Seliger, B., Pettersson, R. F., & Collins, V. P. (1991). Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Research, 51, 2164–2172.

    CAS  PubMed  Google Scholar 

  75. Hu, P., Margolis, B., Skolnik, E. Y., Lammers, R., Ullrich, A., & Schlessinger, J. (1992). Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Molecular and Cellular Biology, 12, 981–990.

    CAS  PubMed  Google Scholar 

  76. Li, E., Stupack, D., Klemke, R., Cheresh, D. A., & Nemerow, G. R. (1998). Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-oh kinase. The Journal of Virology, 72, 2055–2061.

    CAS  Google Scholar 

  77. Wang, W., Zhu, N. L., Chua, J., et al. (2005). Retargeting of adenoviral vector using basic fibroblast growth factor ligand for malignant glioma gene therapy. Journal of Neurosurgery, 103, 1058–1066.

    Article  CAS  PubMed  Google Scholar 

  78. Kambara, H., Okano, H., Chiocca, E. A., & Saeki, Y. (2005). An oncolytic hsv-1 mutant expressing icp34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Research, 65, 2832–2839.

    Article  CAS  PubMed  Google Scholar 

  79. Vandier, D., Rixe, O., Besnard, F., et al. (2000). Inhibition of glioma cells in vitro and in vivo using a recombinant adenoviral vector containing an astrocyte-specific promoter. Cancer Gene Therapy, 7, 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  80. Shinoura, N., Saito, K., Yoshida, Y., et al. (2000). Adenovirus-mediated transfer of bax with caspase-8 controlled by myelin basic protein promoter exerts an enhanced cytotoxic effect in gliomas. Cancer Gene Therapy, 7, 739–748.

    Article  CAS  PubMed  Google Scholar 

  81. Kohno, S., Nakagawa, K., Hamada, K., et al. (2004). Midkine promoter-based conditionally replicative adenovirus for malignant glioma therapy. Oncology Reports, 12, 73–78.

    CAS  PubMed  Google Scholar 

  82. Parr, M. J., Manome, Y., Tanaka, T., et al. (1997). Tumor-selective transgene expression in vivo mediated by an e2f-responsive adenoviral vector. Nature Medicine, 3, 1145–1149.

    Article  CAS  PubMed  Google Scholar 

  83. Wilcox, M. E., Yang, W., Senger, D., et al. (2001). Reovirus as an oncolytic agent against experimental human malignant gliomas. Journal of the National Cancer Institute, 293, 903–912.

    Google Scholar 

  84. Komata, T., Kondo, Y., Kanzawa, T., et al. (2001). Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Research, 61, 5796–5802.

    CAS  PubMed  Google Scholar 

  85. Zhou, Y., Larsen, P. H., Hao, C., & Yong, V. W. (2002). Cxcr4 is a major chemokine receptor on glioma cells and mediates their survival. The Journal of Biological Chemistry, 277, 49481–49487.

    Article  CAS  PubMed  Google Scholar 

  86. Oh, J. W., Drabik, K., Kutsch, O., Choi, C., Tousson, A., & Benveniste, E. N. (2001). Cxc chemokine receptor 4 expression and function in human astroglioma cells. The Journal of Immunology, 166, 2695–2704.

    CAS  PubMed  Google Scholar 

  87. Mishima, K., Asai, A., Kadomatsu, K., et al. (1997). Increased expression of midkine during the progression of human astrocytomas. Neuroscience Letter, 233, 29–32.

    Article  CAS  Google Scholar 

  88. Yang, L., Cao, Z., Li, F., et al. (2004). Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Therapy, 11, 1215–1223.

    Article  CAS  PubMed  Google Scholar 

  89. Post, D. E., & Van Meir, E. G. (2003). A novel hypoxia-inducible factor (hif) activated oncolytic adenovirus for cancer therapy. Oncogene, 22, 2065–2072.

    Article  CAS  PubMed  Google Scholar 

  90. Harada, K., Kurisu, K., Tahara, H., Tahara, E., & Ide, T. (2000). Telomerase activity in primary and secondary glioblastomas multiforme as a novel molecular tumor marker. Journal of Neurosurgery, 93, 618–625.

    Article  CAS  PubMed  Google Scholar 

  91. Alonso, M. M., Cascallo, M., Gomez-Manzano, C., et al. (2007). Icovir-5 shows e2f1 addiction and potent antiglioma effect in vivo. Cancer Research, 67, 8255–8263.

    Article  CAS  PubMed  Google Scholar 

  92. Yazaki, T., Manz, H. J., Rabkin, S. D., & Martuza, R. L. (1995). Treatment of human malignant meningiomas by g207, a replication-competent multimutated herpes simplex virus 1. Cancer Research, 55, 4752–4756.

    CAS  PubMed  Google Scholar 

  93. Marcato, P., Dean, C. A., Giacomantonio, C. A., & Lee, P. W. (2009). Oncolytic reovirus effectively targets breast cancer stem cells. Molecular Therapy, 17, 972–979.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, X., Komaki, R., Wang, L., Fang, B., & Chang, J. Y. (2008). Treatment of radioresistant stem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specific oncolytic adenovirus. Clinical Cancer Research, 14, 2813–2823.

    Article  CAS  PubMed  Google Scholar 

  95. Jiang, H., Gomez-Manzano, C., Aoki, H., et al. (2007). Examination of the therapeutic potential of delta-24-rgd in brain tumor stem cells: role of autophagic cell death. Journal of the National Cancer Institute, 99, 1410–1414.

    Article  CAS  PubMed  Google Scholar 

  96. Bao, S., Wu, Q., Li, Z., et al. Targeting cancer stem cells through l1cam suppresses glioma growth. Cancer Research, 68, 6043–6048.

  97. Wakimoto, H., Kesari, S., Farrell, C. J., et al. (2009). Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Research, 69, 3472–3481.

    Article  CAS  PubMed  Google Scholar 

  98. Van Houdt, W. J., Haviv, Y. S., Lu, B., et al. (2006). A novel transcriptional targeting strategy for treatment of glioma. Journal of Neurosurgery, 104, 583–592.

    Article  PubMed  Google Scholar 

  99. Ulasov, I. V., Rivera, A. A., Sonabend, A. M., et al. (2007). Comparative evaluation of survivin, midkine and cxcr4 promoters for transcriptional targeting of glioma gene therapy. Cancer Biology and Therapy, 6, 679–685.

    Article  CAS  PubMed  Google Scholar 

  100. Ulasov, I. V., Zhu, Z. B., Tyler, M. A., et al. (2007). Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma. Human Gene Therapy, 18, 589–602.

    Article  CAS  PubMed  Google Scholar 

  101. Nandi, S., Ulasov, I. V., Tyler, M. A., et al. (2008). Low-dose radiation enhances survivin-mediated virotherapy against malignant glioma stem cells. Cancer Research, 68, 5778–5784.

    Article  CAS  PubMed  Google Scholar 

  102. Kanzawa, T., Germano, I. M., Komata, T., Ito, H., Kondo, Y., & Kondo, S. (2004). Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death and Differention, 11, 448–457.

    Article  CAS  Google Scholar 

  103. Shmelkov, S. V., Jun, L., St Clair, R., et al. (2004). Alternative promoters regulate transcription of the gene that encodes stem cell surface protein ac133. Blood, 103, 2055–2061.

    Article  CAS  PubMed  Google Scholar 

  104. Bleehen, N. M., & Stenning, S. P. (1991). A medical research council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma. The medical research council brain tumour working party. British Journal of Cancer, 64, 769–774.

    Article  CAS  PubMed  Google Scholar 

  105. Stewart, L. A. (2002). Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet, 359, 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  106. Westphal, M., Hilt, D. C., Bortey, E., et al. (2003). A phase 3 trial of local chemotherapy with biodegradable carmustine (bcnu) wafers (gliadel wafers) in patients with primary malignant glioma. Neuro Oncology, 5, 79–88.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements/Conflict of Interest

This work was supported by the National Cancer Institute (R01-CA122930, R01-CA138587, R21-CA135728), the National Institute of Neurological Disorders and Stroke (K08-NS046430), The Alliance for Cancer Gene Therapy Young Investigator Award, and the American Cancer Society (RSG-07-276-01-MGO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej S. Lesniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, M., Ulasov, I.V., Tyler, M.A. et al. Cancer Stem Cells: The Final Frontier for Glioma Virotherapy. Stem Cell Rev and Rep 7, 119–129 (2011). https://doi.org/10.1007/s12015-010-9132-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9132-7

Keywords

Navigation