Skip to main content

Advertisement

Log in

Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4)

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxia 17 (SCA17) or Huntington’s disease-like-4 is a neurodegenerative disease caused by the expansion above 44 units of a CAG/CAA repeat in the coding region of the TATA box binding protein (TBP) gene leading to an abnormal expansion of a polyglutamine stretch in the corresponding protein. Alleles with 43 and 44 repeats have been identified in sporadic cases and their pathogenicity remains uncertain. Furthermore, incomplete penetrance of pathological alleles with up to 49 repeats has been suggested. The imperfect nature of the repeat makes intergenerational instability extremely rare and de novo mutations are most likely the result of partial duplications. This is one of the rarer forms of autosomal dominant cerebellar ataxia but the associated phenotype is often severe, involving various systems (cerebral cortex, striatum, and cerebellum), with extremely variable age at onset (range: 3–75 years) and clinical presentation. This gene is thought to account for a small proportion of patients with a Huntington’s disease-like phenotype and cerebellar signs. Parkinson’s disease-like, Creutzfeldt-Jakob disease-like and Alzheimer disease-like phenotypes have also been described with small SCA17 expansions. The abnormal protein is expressed at the same level as its normal counterpart and forms neuronal intranuclear inclusions containing other proteins involved in protein folding or degradation. The increase in the size of the glutamine stretch enhances transcription in vitro, probably leading to transcription deregulation. Interestingly, the TBP protein mutated in SCA17 is recruited in the inclusions of other polyglutaminopathies, suggesting its involvement in the transcription down-regulation observed in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  2. Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 1993;4:221–6.

    Article  PubMed  CAS  Google Scholar 

  3. Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet. 1996;14:269–76.

    Article  PubMed  CAS  Google Scholar 

  4. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet. 1996;14:285–91.

    Article  PubMed  CAS  Google Scholar 

  5. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genet. 1996;14:277–84.

    Article  PubMed  CAS  Google Scholar 

  6. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue I, Katayama S, et al. CAG expansion in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 1994;8:221–7.

    Article  PubMed  CAS  Google Scholar 

  7. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nature Genet. 1997;15:62–9.

    Article  PubMed  CAS  Google Scholar 

  8. David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet. 1997;17:65–70.

    Article  PubMed  CAS  Google Scholar 

  9. Koob MD, Benzow KA, Bird TD, Day JW, Moseley ML, Ranum LPW. Rapid cloning of expanded trinucleotide repeat sequences from genomic DNA. Nature Genet. 1998;18:72–5.

    Article  PubMed  CAS  Google Scholar 

  10. Del-Favero J, Krols L, Michalik A, Theuns J, Löfgren A, Goossens D, et al. Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. Hum Mol Genet. 1998;7:177–86.

    Article  PubMed  CAS  Google Scholar 

  11. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, et al. A neurological disease caused by an expanded CAG trinucleotide repeat in the TATAbinding protein gene: a new polyglutamine disease? Hum Mol Genet. 1999;8:2047–53.

    Article  PubMed  CAS  Google Scholar 

  12. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994;6:9–13.

    Article  PubMed  CAS  Google Scholar 

  13. Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994;6:14–18.

    Article  PubMed  CAS  Google Scholar 

  14. Stevanin G, Trottier Y, Cancel G, Dürr A, David G, Didierjean O, et al. Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias. Hum Mol Genet. 1996;5:1887–92.

    Article  PubMed  CAS  Google Scholar 

  15. Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, et al. Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol. 2004;61:727–33.

    Article  PubMed  Google Scholar 

  16. Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet. 1999;21:379–84.

    Article  PubMed  CAS  Google Scholar 

  17. Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000;26:191–4.

    Article  PubMed  CAS  Google Scholar 

  18. Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;23:391–2.

    Article  PubMed  CAS  Google Scholar 

  19. van Swieten JC, Brusse E, de Graaf BM, Krieger E, van de GR, de KI, et al. A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. 2003;72:191–9.

    Article  PubMed  Google Scholar 

  20. Dalski A, Atici J, Kreuz FR, Hellenbroich Y, Schwinger E, Zuhlke C. Mutation analysis in the fibroblast growth factor 14 gene: Frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet. 2005;13:118–20.

    Article  PubMed  CAS  Google Scholar 

  21. Chen DH, Brkanac Z, Verlinde CL, Tan XJ, Bylenok L, Nochlin D, et al. Missense mutations in the regulatory domain of PKC gamma: A new mechanism for dominant nonepisodic cerebellar ataxia. Am J Hum Genet. 2003;72:839–49.

    Article  PubMed  CAS  Google Scholar 

  22. Stevanin G, Hahn V, Lohmann E, Bouslam N, Gouttard M, Soumphonphakdy C, et al. Mutation in the catalytic domain of protein kinase C gamma and extension of the phenotype associated with spinocerebellar ataxia type 14. Arch Neurol. 2004;61:1242–8.

    Article  PubMed  Google Scholar 

  23. van de Warrenburg BP, Verbeek DS, Piersma SJ, Hennekam FA, Pearson PL, Knoers NV, et al. Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology. 2003;61:1760–5.

    PubMed  Google Scholar 

  24. Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol. 2003;60:1749–51.

    Article  PubMed  Google Scholar 

  25. Verbeek DS, Knight MA, Harmison GG, Fischbeck KH, Howell BW. Protein kinase C gamma mutations in spinocerebellar ataxia 14 increase kinase activity and alter membrane targeting. Brain. 2005;128:436–42.

    Article  PubMed  CAS  Google Scholar 

  26. Chen DH, Cimino PJ, Ranum LP, Zoghbi HY, Yabe I, Schut L, et al. The clinical and genetic spectrum of spinocerebellar ataxia 14. Neurology. 2005;64:1258–60.

    PubMed  CAS  Google Scholar 

  27. Klebe S, Durr A, Rentschler A, Hahn-Barma V, Abele M, Bouslam N, et al. New mutations of protein kinase C gamma associated with spinocerebellar ataxia type 14 (SCA14). Ann Neurol. 2005;58:720–729.

    Article  PubMed  CAS  Google Scholar 

  28. Seki T, Adachi N, Ono Y, Mochizuki H, Hiramoto K, Amano T, et al. Mutant protein kinase C gamma found in spinocerebellar ataxia type 14 is susceptible to aggregate and cause cell death. J Biol Chem. 2005;280:29096–106.

    Article  PubMed  CAS  Google Scholar 

  29. Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nature Genet. 2006;38:184–90.

    Article  PubMed  CAS  Google Scholar 

  30. Waters MF, Minassian NA, Stevanin G, Figueroa KP, Bannister JP, Nolte D, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nature Genet. 2006;38:447–51.

    Article  PubMed  CAS  Google Scholar 

  31. Ishikawa K, Toru S, Tsunemi T, Li M, Kobayashi K, Yokota T, et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a singlenucleotide substitution in the 5′ untranslated region of the gene encoding a protein with spectrin repeat and rho Guanine-nucleotide exchange-factor domains. Am J Hum Genet. 2005;77:280–96.

    Article  PubMed  CAS  Google Scholar 

  32. Zoghbi HY, Orr HT. Glutamine repeats and neurodegeneration. Annu Rev Neurosci. 2000;23:217–47.

    Article  PubMed  CAS  Google Scholar 

  33. Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, et al. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet. 2001;9:160–4.

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001;10:1441–8.

    Article  PubMed  CAS  Google Scholar 

  35. Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, et al. CAG repeat expansion in the TATA boxbinding protein gene causes autosomal dominant cerebellar ataxia. Brain. 2001;124:1939–47.

    Article  PubMed  CAS  Google Scholar 

  36. Stevanin G, Fujigasaki H, Lebre AS, Camuzat A, Jeannequin C, Dode C, et al. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126:1599–603.

    Article  PubMed  Google Scholar 

  37. Wu YR, Fung HC, Lee-Chen GJ, Gwinn-Hardy K, Ro LS, Chen ST, et al. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different neurodegenerative diseases. J Neural Transm. 2005;112:539–46.

    Article  PubMed  CAS  Google Scholar 

  38. Oda M, Maruyama H, Komure O, Morino H, Terasawa H, Izumi Y, et al. Possible reduced penetrance of expansion of 44 to 47 CAG/CAA repeats in the TATA-binding protein gene in spinocerebellar ataxia type 17. Arch Neurol. 2004;61:209–12.

    Article  PubMed  Google Scholar 

  39. Rigby PW. Three in one and one in three: it all depends on TBP. Cell. 1993;72:7–10.

    Article  PubMed  CAS  Google Scholar 

  40. Imbert G, Trottier Y, Beckmann J, Mandel JL. The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics. 1994;21:667–8.

    Article  PubMed  CAS  Google Scholar 

  41. Lescure A, Lutz Y, Eberhard D, Jacq X, Krol A, Grummt I, et al. The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J. 1994;13:1166–75.

    PubMed  CAS  Google Scholar 

  42. Gerber HP, Seipel K, Georgiev O, Hofferer M, Hug M, Rusconi S, et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994;263:808–11.

    Article  PubMed  CAS  Google Scholar 

  43. Gostout B, Liu Q, Sommer SS. ‘Cryptic’ repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: Analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am J Hum Genet. 1993;52:1182–90.

    PubMed  CAS  Google Scholar 

  44. Reid SJ, Rees MI, Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, et al. Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis. 2003;13:37–45.

    Article  PubMed  CAS  Google Scholar 

  45. Rubinsztein DC, Leggo J, Crow TJ, DeLisi LE, Walsh C, Jain S, et al. Analysis of polyglutamine-coding repeats in the TATA-binding protein in different human populations and in patients with schizophrenia and bipolar affective disorder. Am J Med Genet. 1996;67:495–8.

    Article  PubMed  CAS  Google Scholar 

  46. Cellini E, Forleo P, Nacmias B, Tedde A, Bagnoli S, Piacentini S, et al. Spinocerebellar ataxia type 17 repeat in patients with Huntington’s disease-like and ataxia. Ann Neurol. 2004;56:163–4.

    Article  PubMed  Google Scholar 

  47. Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, et al. Trinucleotide repeats in 202 families with ataxia: A small expanded (CAG)n allele at the SCA17 locus. Arch Neurol. 2002;59:623–9.

    Article  PubMed  CAS  Google Scholar 

  48. Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol. 2003;54:367–75.

    Article  PubMed  Google Scholar 

  49. Bauer P, Laccone F, Rolfs A, Wullner U, Bosch S, Peters H, et al. Trinucleotide repeat expansion in SCA17/TBP in white patients with Huntington’s disease-like phenotype. J Med Genet. 2004;41:230–2.

    Article  PubMed  CAS  Google Scholar 

  50. Toyoshima Y, Yamada M, Onodera O, Shimohata M, Inenaga C, Fujita N, et al. SCA17 homozygote showing Huntington’s disease-like phenotype. Ann Neurol. 2004;55:281–6.

    Article  PubMed  CAS  Google Scholar 

  51. Wu YR, Lin HY, Chen CM, Gwinn-Hardy K, Ro LS, Wang YC, et al. Genetic testing in spinocerebellar ataxia in Taiwan: Expansions of trinucleotide repeats in SCA8 and SCA17 are associated with typical Parkinson’s disease. Clin Genet. 2004;65:209–14.

    Article  PubMed  CAS  Google Scholar 

  52. Zuhlke C, Dalski A, Schwinger E, Finckh U. Spinocerebellar ataxia type 17: Report of a family with reduced penetrance of an unstable Gln49 TBP allele, haplotype analysis supporting a founder effect for unstable alleles and comparative analysis of SCA17 genotypes. BMC Med Genet. 2005;6:27.

    Article  PubMed  CAS  Google Scholar 

  53. De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, et al. Dementia, ataxia, extrapyramidal features, and epilepsy: Phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci. 2003;24:166–7.

    Article  PubMed  Google Scholar 

  54. Zuhlke C, Gehlken U, Hellenbroich Y, Schwinger E, Burk K. Phenotypical variability of expanded alleles in the TATAbinding protein gene. Reduced penetrance in SCA17? J Neurol. 2003;250:161–3.

    Article  PubMed  CAS  Google Scholar 

  55. Zuhlke CH, Spranger M, Spranger S, Voigt R, Lanz M, Gehlken U, et al. SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet. 2003;11:629–32.

    Article  PubMed  CAS  Google Scholar 

  56. Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M, et al. Intergenerational instability and marked anticipation in SCA-17. Neurology. 2003;61:1441–3.

    PubMed  CAS  Google Scholar 

  57. Shatunov A, Fridman EA, Pagan FI, Leib J, Singleton A, Hallett M, et al. Small de novo duplication in the repeat region of the TATA-box-binding protein gene manifest with a phenotype similar to variant Creutzfeldt-Jakob disease. Clin Genet. 2004;66:496–501.

    Article  PubMed  CAS  Google Scholar 

  58. Bruni AC, Takahashi-Fujigasaki J, Maltecca F, Foncin JF, Servadio A, Casari G, et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA box-binding protein mutation. Arch Neurol. 2004;61:1314–20.

    Article  PubMed  Google Scholar 

  59. Myers RH, MacDonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SA, et al. De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nature Genet. 1993;5:168–73.

    Article  PubMed  CAS  Google Scholar 

  60. Stevanin G, Giunti P, Belal GDS, Durr A, Ruberg M, Wood N, et al. De novo expansion of intermediate alleles in spinocerebellar ataxia 7. Hum Mol Genet. 1998;7:1809–13.

    Article  PubMed  CAS  Google Scholar 

  61. Mittal U, Roy S, Jain S, Srivastava AK, Mukerji M. Postzygotic de novo trinucleotide repeat expansion at spinocerebellar ataxia type 7 locus: Evidence from an Indian family. J Hum Genet. 2005;50:155–7.

    Article  PubMed  CAS  Google Scholar 

  62. Giunti P, Stevanin G, Worth P, David G, Brice A, Wood NW. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet. 1999;64:1594–603.

    Article  PubMed  CAS  Google Scholar 

  63. Shizuka M, Watanabe M, Ikeda Y, Mizushima K, Okamoto K, Shoji M. Molecular analysis of a de novo mutation for spinocerebellar ataxia type 6 and (CAG)n repeat units in normal elder controls. J Neurol Sci. 1998;161:85–7.

    Article  PubMed  CAS  Google Scholar 

  64. Watanabe M, Satoh A, Kanemoto M, Ohkoshi N, Shoji S. De novo expansion of a CAG repeat in a japanese patient with sporadic Huntington’s disease. J Neurol Sci. 2000;178:159–62.

    Article  PubMed  CAS  Google Scholar 

  65. Schols L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G, et al. Spinocerebellar ataxia type 2: Genotype and phenotype in German kindreds. Arch Neurol. 1997;54:1073–80.

    PubMed  CAS  Google Scholar 

  66. Bauer P, Kraus J, Matoska V, Brouckova M, Zumrova A, Goetz P. Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. J Neurol. 2004;251:1023–4.

    Article  PubMed  CAS  Google Scholar 

  67. Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, et al. Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: A study of 1,286 Japanese patients. Am J Med Genet. 2002;114:578–83.

    Article  PubMed  Google Scholar 

  68. Hagenah JM, Zuhlke C, Hellenbroich Y, Heide W, Klein C. Focal dystonia as a presenting sign of spinocerebellar ataxia 17. Mov Disord. 2004;19:217–20.

    Article  PubMed  Google Scholar 

  69. Manganelli F, Perretti A, Nolano M, Lanzillo B, Bruni AC, De Michele G, et al. Electrophysiologic characterization in spinocerebellar ataxia 17. Neurology. 2006;66:932–4.

    Article  PubMed  CAS  Google Scholar 

  70. Craig K, Keers SM, Walls TJ, Curtis A, Chinnery PF. Minimum prevalence of spinocerebellar ataxia 17 in the north east of England. J Neurol Sci. 2005;239:105–09.

    Article  PubMed  CAS  Google Scholar 

  71. Alendar A, Euljkovic B, Savic D, Djarmati A, Keckarevic M, Ristic A, et al. Spinocerebellar ataxia type 17 in the Yugoslav population. Acta Neurol Scand. 2004;109:185–7.

    Article  PubMed  CAS  Google Scholar 

  72. Costa MC, Teixeira-Castro A, Constante M, Magalhaes M, Magalhaes P, Cerqueira J, et al. Exclusion of mutations in the PRNP, JPH3, TBP, ATN1, CREBBP, POU3F2 and FTL genes as a cause of disease in Portuguese patients with a Huntington-like phenotype. J Hum Genet. 2006;51:645–51.

    Article  CAS  Google Scholar 

  73. Seixas AI, Maurer MH, Lin M, Callahan C, Ahuja A, Matsuura T, et al. FXTAS, SCA10, and SCA17 in American patients with movement disorders. Am J Med Genet A. 2005;136A:87–9.

    Article  Google Scholar 

  74. Filla A, De Michele G, Cocozza S, Patrignani A, Volpe G, Castaldo I, et al. Early onset autosomal dominant dementia with ataxia, extrapyramidal features, and epilepsy. Neurology. 2002;58:922–8.

    PubMed  CAS  Google Scholar 

  75. Lin IS, Wu RM, Lee-Chen GJ, Shan DE, Gwinn-Hardy K. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat Disord. 2007;13:246–9.

    Article  PubMed  Google Scholar 

  76. Chen CM, Lane HY, Wu YR, Ro LS, Chen FL, Hung WL, et al. Expanded trinucleotide repeats in the TBP/SCA17 gene mapped to chromosome 6q27 are associated with schizophrenia. Schizophr Res. 2005;78:131–6.

    Article  PubMed  Google Scholar 

  77. Hernandez D, Hanson M, Singleton A, Gwinn-Hardy K, Freeman J, Ravina B, et al. Mutation at the SCA17 locus is not a common cause of parkinsonism. Parkinsonism Relat Disord. 2003;9:317–20.

    Article  PubMed  Google Scholar 

  78. Grundmann K, Laubis-Herrmann U, Dressler D, Vollmer-Haase J, Bauer P, Stuhrmann M, et al. Mutation at the SCA17 locus is not a common cause of primary dystonia. J Neurol. 2004;251:1232–4.

    Article  PubMed  CAS  Google Scholar 

  79. Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, et al. Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord. 2005;20:1521–3.

    Article  PubMed  Google Scholar 

  80. Minnerop M, Joe A, Lutz M, Bauer P, Urbach H, Helmstaedter C, et al. Putamen dopamine transporter and glucose metabolism are reduced in SCA17. Ann Neurol. 2005;58:490–1.

    Article  PubMed  CAS  Google Scholar 

  81. Stevanin G, Durr A, Brice A. Clinical and molecular advances in autosomal dominant cerebellar ataxias: from genotype to phenotype and physiopathology. Eur J Hum Genet. 2000;8:4–18.

    Article  PubMed  CAS  Google Scholar 

  82. Sato K, Kashihara K, Okada S, Ikeuchi T, Tsuji S, Shomori T, et al. Does homozygosity advance the onset of dentatorubral- pallidoluysian atrophy? Neurology. 1995;45:1934–6.

    PubMed  CAS  Google Scholar 

  83. Sobue G, Doyu M, Nakao N, Shimada N, Mitsuma T, Maruyama H, et al. Homozygosity for Machado-Joseph disease gene enhances phenotypic severity [letter]. J Neurol Neurosurg Psychiatry. 1996;60:354–6.

    Article  PubMed  CAS  Google Scholar 

  84. Ikeuchi T, Takano H, Koide R, Horikawa Y, Honma Y, Onishi Y, et al. Spinocerebellar ataxia type 6: CAG repeat expansion in alpha1A voltage-dependent calcium channel gene and clinical variations in Japanese population. Ann Neurol. 1997;42:879–84.

    Article  PubMed  CAS  Google Scholar 

  85. Squitieri F, Gellera C, Cannella M, Mariotti C, Cislaghi G, Rubinsztein DC, et al. Homozygosity for CAG mutation in Huntington disease is associated with a more severe clinical course. Brain. 2003;126:946–55.

    Article  PubMed  Google Scholar 

  86. Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, et al. Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature. 1995;378:403–06.

    Article  PubMed  CAS  Google Scholar 

  87. Martianov I, Viville S, Davidson I. RNA polymerase II transcription in murine cells lacking the TATA binding protein. Science. 2002;298:1036–9.

    Article  PubMed  CAS  Google Scholar 

  88. Uchihara T, Fujigasaki H, Koyano S, Nakamura A, Yagishita S, Iwabuchi K. Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias – triple-labeling immunofluorescence study. Acta Neuropathol (Berl). 2001;102:149–52.

    CAS  Google Scholar 

  89. Roon-Mom WM, Reid SJ, Jones AL, MacDonald ME, Faull RL, Snell RG. Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Brain Res Mol Brain Res. 2002;109:1–10.

    PubMed  Google Scholar 

  90. Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol. 1998;143:1457–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Stevanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevanin, G., Brice, A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum 7, 170–178 (2008). https://doi.org/10.1007/s12311-008-0016-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0016-1

Key words

Navigation