Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Methyltetrahydrofolate is a potent and selective agonist for kainic acid receptors

Abstract

Kainic acid, a dicarboxylic acid containing pyrrolidine, is a potent neuronal depolarizing agent in the mammalian central nervous system, being some 50 times more effective than the putative neurotransmitter L-glutamate1–5. As kainic acid is a structural analogue of glutamic acid, it has been proposed that the potent excitatory effects of kainate reflect its restricted conformation, which is optimal for interaction with excitatory glutamate receptors2,4. More recent studies, however, do not support this hypothesis. In invertebrates kainic acid has been found to be a rather weak agonist at excitatory glutamate receptor sites6,7, whereas at the crustacean neuromuscular junction8, on certain neurones of Helix aspersa9 and in the mammalian cerebral cortex3, kainic acid seems to act at receptors distinct from those which mediate the neuroexcitatory action of glutamate. In addition, the ionic requirements for kainate-induced neuronal depolarization differ from those for glutamate-induced depolarization in the mammalian brain10, and glutamate-induced excitation of rat cortical neurones can be antagonized preferentially by drugs which are very weak in blocking kainate-induced depolarization11. Finally, the characteristics of binding sites for 3H-kainic acid in rat brain are consistent with the existence of specific kainate receptors on neuronal membranes12. Thus, the kainate sites may represent receptors for an unidentified endogenous substance probably containing the glutamate structure. Here we report that the pteroylmonoglutamate compound methyltetrahydrofolate (MTHF) is a potent competitor for 3H-kainic acid binding sites in rat cerebellar membranes. This action is specific in that MTHF is very weak or inactive at sites for 3H-glutamate or 3H-γ-aminobutyric acid (GABA) respectively. Electrophysio-logical studies in frog spinal cord suggest that MTHF is an agonist at the kainate receptors. The implications of these results are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shinozaki, H. & Konishi, S. Brain Res. 24, 368–371 (1970).

    Article  CAS  Google Scholar 

  2. Johnston, G. A. R., Curtis, D. R., Davies, J. & McCulloch, R. M. Nature 248, 804–805 (1974).

    Article  ADS  CAS  Google Scholar 

  3. McCulloch, R. M., Johnson, G. A., Game, C. J. & Curtis, D. R. Expl Brain Res. 21 515–518 (1974).

    Article  CAS  Google Scholar 

  4. Buu, N. T., Puil, E. & van Gelder, N. M. Gen Pharmac. 7, 5–14 (1976).

    Article  CAS  Google Scholar 

  5. Polc, P. & Haefely, W. Naunyn-Schmiedebergs Archs Pharmak. 300, 199–203 (1977).

    CAS  Google Scholar 

  6. Constanti, A. & Nistri, A. Br. J. Pharmac. 57, 359–368 (1976).

    Article  CAS  Google Scholar 

  7. Clements, A. N. & May, T. E. J. exp. Biol. 61, 421–422 (1974).

    CAS  PubMed  Google Scholar 

  8. Shinozaki, H. & Shibuya, I. Neuropharmacology 13, 1057–1065 (1974).

    Article  CAS  Google Scholar 

  9. Walker, R. J. Comp. Biochem. Physiol. 55c, 61–67 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Evans, R. H., Francis, A. A. & Watkins, J. C. Experientia 33, 246–248 (1977).

    Article  CAS  Google Scholar 

  11. Hall, J. G., Hicks, T. P. & McLennan, H. Neurosci. Lett. 8, 171–175 (1978).

    Article  CAS  Google Scholar 

  12. London, E. D. & Coyle, J. T. Molec. Pharmac. 15, 492–505 (1979).

    CAS  Google Scholar 

  13. Enna, S. J. & Snyder, S. H. Brain Res. 100, 81–97 (1975).

    Article  CAS  Google Scholar 

  14. Herbert, V., Larrabee, A. R. & Buchanan, J. M. J. clin. Invest. 41, 1134–1138 (1962).

    Article  CAS  Google Scholar 

  15. Herbert, V. & Zalusky, R. Fedn Proc. 20, 453 (1961).

    Google Scholar 

  16. Spector, R. & Lorenzo, A. V. Science 187, 540–542 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Bridgers, W. F. & McClain, L. D. Adv. Biochem. Psychopharmac. 4, 81–92 (1972).

    CAS  Google Scholar 

  18. Loots, J. M. et al. (in preparation).

  19. Lowagie, C. & Gerschenfeld, H. M. Nature 248, 533–535 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Spector, R. G. Biochem. Pharmac. 20, 1730–1732 (1971).

    Article  CAS  Google Scholar 

  21. Hommes, O. R. & Obbens, E. A. M. T. J. neurol. Sci. 16, 271–281 (1972).

    Article  CAS  Google Scholar 

  22. Olney, J. W., Sharp, L. G. & de Hubareff, T. Neurosci. Abstr. 5, 371 (1975).

    Google Scholar 

  23. Coyle, J. T. & Schwarcz, R. Nature 263, 244–246 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Herndon, R. M. & Coyle, J. T. Science 198, 71–72 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Coyle, J. T., Molliver, M. E. & Kuhar, M. J. J. comp. Neurol. 180, 301–323 (1978).

    Article  CAS  Google Scholar 

  26. Curtis, D. R. et al. Brain Res. 41, 283–301 (1972).

    Article  CAS  Google Scholar 

  27. Zieglgänsberger, W. & Puil, E. A. Expl Brain Res. 17, 35–49 (1973).

    Article  Google Scholar 

  28. Schwarcz, R., Scholz, D. & Coyle, J. T. Neuropharmacology 17, 145–151 (1978).

    Article  CAS  Google Scholar 

  29. Herbert, V. & Zalusky, R. J. clin. Invest. 41, 1263–1276 (1962).

    Article  CAS  Google Scholar 

  30. van Tender, S., Metz, J. & Green, R. Br. J. Nutr. 34, 397–410 (1975).

    Article  Google Scholar 

  31. Waters, A. H. & Mollin, D. L. Br. J. Haemat. 9, 319–327 (1963).

    Article  CAS  Google Scholar 

  32. Brennan, M. J. W. et al. Brain Res. (in the press).

  33. Baudry, M. & Lynch, G. Eur. J. Pharmac. 57, 283–285 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruck, A., Kramer, S., Metz, J. et al. Methyltetrahydrofolate is a potent and selective agonist for kainic acid receptors. Nature 287, 852–853 (1980). https://doi.org/10.1038/287852a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287852a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing