Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias

Abstract

A POLYGLUTAMINE expansion (encoded by a CAG repeat) in specific proteins causes neurodegeneration in Huntington's disease (HD) and four other disorders1–6, by an unknown mechanism thought to involve gain of function or toxicity of the mutated protein7,8. The pathological threshold is 37–40 glutamines in three of these diseases, whereas the corresponding normal proteins contain polymorphic repeats of up to about 35 glutamines1–3. The age of onset of clinical manifestations is inversely correlated to the length of the polyglutamine expansion. Here we report the characterization of a monoclonal antibody that selectively recognizes polyglutamine expansion in the proteins implicated in HD and in spinocerebellar ataxia (SCA) 1 and 3. The intensity of signal depends on the length of the polyglutamine expansion, and the antibody also detects specific pathological proteins expected to contain such expansion, in SCA2 and in autosomal dominant cere-bellar ataxia with retinal degeneration, whose genes have not yet been identified9–13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E. & Fischbeck, K. H. Nature 352, 77–79 (1991).

    Article  ADS  CAS  Google Scholar 

  2. The Huntington's Disease Collaborative Research Group Cell 72, 971–983 (1993).

  3. Orr, H. T. et al. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  4. Koide, R. et al. Nature Genet. 6, 9–13 (1994).

    Article  CAS  Google Scholar 

  5. Nagafuchi, S. et al. Nature Genet. 6, 14–18 (1994).

    Article  CAS  Google Scholar 

  6. Kawaguchi, Y. et al. Nature Genet. 8, 221–228 (1995).

    Article  Google Scholar 

  7. Housman, D. Nature Genet. 10, 3–4 (1995).

    Article  CAS  Google Scholar 

  8. Albin, R. L. & Tagle, D. A. Trends Neurosci. 18, 11–14 (1995).

    Article  CAS  Google Scholar 

  9. Benomar, A. et al. Nature Genet. 10, 84–88 (1995).

    Article  CAS  Google Scholar 

  10. Gouw, L. G. et al. Nature Genet. 10, 89–93 (1995).

    Article  CAS  Google Scholar 

  11. Gispert, S. et al. Nature Genet. 4, 295–299 (1993).

    Article  CAS  Google Scholar 

  12. Belal, S. et al. Neurology 44, 1423–1426 (1994).

    Article  CAS  Google Scholar 

  13. Pulst, S.-M., Nechiporuk, A. & Starkman, S. Nature Genet. 5, 8–10 (1993).

    Article  CAS  Google Scholar 

  14. Gerber, H. P. et al. Science 263, 808–811 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Imbert, G., Trottier, Y., Beckmann, J. & Mandel, J.-L. Genomics 21, 667–668 (1994).

    Article  CAS  Google Scholar 

  16. Gostout, B., Liu, Q. & Sommer, S. S. Am. J. hum. Genet. 52, 1182–1190 (1995).

    Google Scholar 

  17. Lescure, A. et al. EMBO J. 13, 1166–1175 (1994).

    Article  CAS  Google Scholar 

  18. Trottier, Y. et al. Nature Genet. 10, 104–110 (1995).

    Article  CAS  Google Scholar 

  19. Dürr, A. et al. Brain (in the press).

  20. Gardner, K. et al. Neurology 44, A361 (1994) (Abstract).

    Article  Google Scholar 

  21. Ranum, L. P. W., Schut, L. J., Lundgren, J. K., Orr, H. T. & Livingston, D. M. Nature Genet. 8, 280–284 (1994).

    Article  CAS  Google Scholar 

  22. Gispert, S. et al. Am. J. hum. Genet. 56, 183–187 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hazan, J. et al. Hum. molec. Genet. 3, 1569–1573 (1994).

    Article  CAS  Google Scholar 

  24. Hazan, J. et al. Nature Genet. 5, 163–167 (1993).

    Article  CAS  Google Scholar 

  25. Ross, C. A., Mclnnis, M. G., Margolis, R. L. & Li, S.-H. Trends Neurosci. 16, 254–260 (1993).

    Article  CAS  Google Scholar 

  26. Stott, K., Blackburn, J. M., Butler, P. J. G. & Perutz, M. Proc. natn. Acad. Sci. U.S.A. 92, 6509–6513 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Trottier, Y., Biancalana, V. & Mandel, J.-L. J. med. Genet. 31, 377–382 (1994).

    Article  CAS  Google Scholar 

  28. Servadio, A. et al. Nature Genet. 10, 94–98 (1995).

    Article  CAS  Google Scholar 

  29. Sittler, A., Devys, D., Weber, C. & Mandel, J.-L. Hum. molec. Genet. (in the press).

  30. Lee, K. A. W., Bindereif, A. & Green, M. R. Gene analyt. Techn. 5, 22–31 (1988).

    Article  CAS  Google Scholar 

  31. Lezin, A. et al. Hum. Genet. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trottier, Y., Lutz, Y., Stevanin, G. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378, 403–406 (1995). https://doi.org/10.1038/378403a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378403a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing