Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form

Abstract

Huntington's disease (HD) results from the expansion of a polyglutamine encoding CAG repeat in a gene of unknown function. The wide expression of this transcript does not correlate with the pattern of neuropathology in HD. To study the HD gene product (huntingtin), we have developed monoclonal antibodies raised against four different regions of the protein. On western blots, these monoclonals detect the 350 kD huntingtin protein in various human cell lines and in neural and non–neural rodent tissues. In cell lines from HD patients, a doublet protein is detected corresponding to the mutated and normal huntingtin. Immunohistochemical studies in the human brain using two of these antibodies detects the huntingtin in perikarya of some neurons, neuropiles, varicosities and as punctate staining likely to be nerve endings.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harper, P.S. The epidemiology of Huntington's disease. Hum. Genet. 89, 365–376 (1992).

    Article  CAS  Google Scholar 

  2. Martin, J.B. & Gusella, J.F. Huntington's disease: Pathogenesis and management. New Engl. J. Med. 315, 1267–1276 (1986).

    Article  CAS  Google Scholar 

  3. Vonsattel, J.P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    Article  CAS  Google Scholar 

  4. Harper, P.S. et al. Huntington's disease (W.B. Saunders, Philadelphia, 1991).

    Google Scholar 

  5. Ferrante, R.J. et al. Selective sparing of a class of striatal neurons in Huntington's disease. Science 230, 561–563 (1985).

    Article  CAS  Google Scholar 

  6. The Huntington's Disease Collaborative Research Group. A novel gene containing atrinucleotide repeat that isexpanded and unstableon Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  7. Kremer, B. et al. A worldwide study of the Huntington's disease mutation: the sensitivity and specificity of measuring CAG repeats. New Engl. J. Med. 330, 1402–1406 (1994).

    Article  Google Scholar 

  8. Duyao, M.P. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet. 4, 387–392 (1993).

    Article  CAS  Google Scholar 

  9. Snell, R.G. et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nature Genet. 4, 393–397 (1993).

    Article  CAS  Google Scholar 

  10. Andrew, S.E. et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nature Genet. 4, 398–403 (1993).

    Article  CAS  Google Scholar 

  11. Trottier, Y., Biancalana, V. & Mandel, J.L. Instability of CAG repeats in Huntington's disease: relation of parental transmission and age of onset. J. med. Genet. 31, 377–382 (1994).

    Article  CAS  Google Scholar 

  12. Gusella, J.F. & MacDonald, M.E. Huntington's disease and repeating trinucleotides. New Engl. J. Med. 330, 1450–1451 (1994).

    Article  CAS  Google Scholar 

  13. Strong, T.V. et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genet. 5, 259–265 (1993).

    Article  CAS  Google Scholar 

  14. Li, S.-H. et al. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11, 985–993 (1993).

    Article  CAS  Google Scholar 

  15. La Spada, A.R., Wilson, E.M., Lubahn, D.B., Harding, A.E. & Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352, 77–79 (1991).

    Article  CAS  Google Scholar 

  16. Orr, H.T. et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4, 221–226 (1993).

    Article  CAS  Google Scholar 

  17. Koide, R. et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet. 6, 9–13 (1994).

    Article  CAS  Google Scholar 

  18. Nagafuchi, S. et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6, 14–18 (1994).

    Article  CAS  Google Scholar 

  19. Kawaguchi, Y. et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet. 8, 221–228 (1995).

    Article  Google Scholar 

  20. Banfi, S. et al. Identification and characterization of the gene causing typel spinocerebellar ataxia. Nature Genet. 7, 513–520 (1994).

    Article  CAS  Google Scholar 

  21. Nagafuchi, S. et al. Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nature Genet. 8, 177–182 (1994).

    Article  CAS  Google Scholar 

  22. Imbert, G., Trottier, Y., Beckman, J. & Mandel, J.-L. The gene for the TATA-binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27. Genomics 21, 667–668 (1994).

    Article  CAS  Google Scholar 

  23. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Prou. natn. Acad. Sci. U.S.A. 91, 5355–5358 (1994).

    Article  CAS  Google Scholar 

  24. Hoogeveen, A.T. et al. Characterization and localization of the Huntington disease gene product. Hum. molec. Genet. 2, 2069–2073 (1993).

    Article  CAS  Google Scholar 

  25. Albin, R.L. & Tagle, D.A. Genetics and molecular biology of Huntington's disease. Trends Neurosci. 18, 11–14 (1995).

    Article  CAS  Google Scholar 

  26. Gerber, H.P. et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).

    Article  CAS  Google Scholar 

  27. Mhatre, A.M. et al. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nature Genet. 5, 84–88 (1993).

    Article  Google Scholar 

  28. Chamberlain, N.L., Driver, E.D. & Miesfeld, R.L. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucl. Acids Res. 22, 3181–3186 (1994).

    Article  CAS  Google Scholar 

  29. Green, H. Human genetic diseases due to codon reiteration: relationship to an evolutionary mechanism. Cell 74, 955–956 (1993).

    Article  CAS  Google Scholar 

  30. Jarrett, J.T. & Lansbury, P.T. Jr., Seeding “one-dimensional cristallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and Scrapie. Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  31. Dieckmann, C.L. & Tzagoloff, A. Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J. biol. Chem. 260, 1513–1520 (1985).

    CAS  PubMed  Google Scholar 

  32. Kastner, P. et al. Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J. 11, 629–642 (1992).

    Article  CAS  Google Scholar 

  33. Barnes, G.T. et al. Mouse Huntington's disease gene homolog (Hdh). Somat. Cell molec. Genet. 20, 87–97 (1994).

    Article  CAS  Google Scholar 

  34. Lin, B. et al. Sequence of the murine Huntington disease gene: evidence for conservation, and polymorphism in a triplet (CCG) repeat alternate splicing. Hum. molec. Genet. 3, 85–92 (1994).

    Article  CAS  Google Scholar 

  35. Green, S. et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320, 134–139 (1986).

    Article  CAS  Google Scholar 

  36. Devys, D., Lutz, Y., Rouyer, N., Bellocq, J.-P. & Mandel, J.L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nature Genet. 4, 335–340 (1993).

    Article  CAS  Google Scholar 

  37. Gorman, C.M., Lane, D.P. & Rigby, P.W. High efficiency gene transfer into mammalian cells. Philos. Trans. R. Soc. Lond. [Biol]. 307, 343–346 (1984).

    Article  CAS  Google Scholar 

  38. Graybiel, A.M., Hirsch, E. & Agid, Y.A. Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity. Proc. natn. Acad. Sci. U.S.A. 84, 303–307 (1987).

    Article  CAS  Google Scholar 

  39. Hirsch, E., Graybiel, A.M. & Agid, Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345–348 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trottier, Y., Devys, D., Imbert, G. et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nat Genet 10, 104–110 (1995). https://doi.org/10.1038/ng0595-104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0595-104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing