Skip to main content
Log in

A new approach to biochemical evaluation of brain dopamine metabolism

  • Commentary
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Dopaminergic neurotransmission in brain is receiving increased attention because of its known involvement in Parkinson's disease and new methods for the treatment of this disorder and because of hypotheses relating several psychiatric disorders to abnormalities in brain dopaminergic systems.

  2. 2.

    Chemical assessment of brain dopamine metabolism has been attempted by measuring levels of its major metabolite, homovanillic acid (HVA), in cerebrospinal fluid, plasma, or urine. Because HVA is derived in part from dopamine formed in noradrenergic neurons, plasma levels and urinary excretion rates of HVA do not adequately reflect solely metabolism of brain dopamine.

  3. 3.

    Using debrisoquin, the peripheral contributions of HVA to plasma or uninary HVA can be diminished, but the extent of residual HVA formation in noradrenergic neurons is unknown. By measuring the levels of methoxyhydroxyphenylglycol (MHPG) in plasma or of urinary norepinephrine metabolites (total MHPG in monkeys; the sum of total MHPG and vanillyl mandelic acid (VMA) in humans) along with HVA, it is possible to estimate the degree of impairment by debrisoquin of HVA formation from noradrenergic neuronal dopamine and thereby better assess brain dopamine metabolism.

  4. 4.

    This method was applied to a monkey before and after destruction of the nigrostriatal pathway by the administration of MPTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anden, N. E., and Grabowska-Anden, M. (1983). Formation of deaminated metabolites of dopamine in noradrenaline neurons.Naunyn-Schmiedeberg Arch. Pharmacol. 3241–6.

    Google Scholar 

  • Anden, N. E., Grabowska-Anden, M., Lindgren, S., and Oweling, M. (1985). Very rapid turnover of dopamine in noradrenaline cell body regions.Naunyn-Schmiedeberg Arch. Pharmacol. 329258–263.

    Google Scholar 

  • Axelrod, J., and Weinshilboum, R. (1982). Catecholamines, InPhysiology in Medicine (A. P. Fishman, Ed.), American Physiological Society, pp. 237–242.

  • Bareggi, S. R., Marc, V., and Morselli, P. L. (1974). Urinary excretion of 3-methoxy-4-hydroxy-phenylglycol sulfate in rats after intraventricular injection of 6-OHDA.Brain Res. 75177–180.

    Google Scholar 

  • Bartholini, G., Plestcher, A., and Tissot, R. (1981). Brain capillaries as a source of homovanillic acid in cerebrospinal fluid.Brain Res. 27163–168.

    Google Scholar 

  • Brown, M. H., and Dollery, C. T. (1981). A specific radioenzymatic assay for dihydroxyphenylalanine (DOPA). Plasma DOPA may be the precursor of urine free dopamine.Br. J. Clin. Pharmacol. 179.

    Google Scholar 

  • Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., and Kopin, I. J. (1983). A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).Proc. Natl. Acad. Sci. 804546–4550.

    Google Scholar 

  • Burns, R. S., LeWitt, P. A., Ebert, M. H., Pakkenberg, H., and Koppin, I. J. (1985). The clinical syndrome of striatal dopamine deficiency. Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).N. Engl. J. Med. 3121418–1421.

    Google Scholar 

  • Carlsson, A. (1959). The occurrence, distribution, and physiological role of catecholamines in the nervous system.Physiol. Rev. 11490–493.

    Google Scholar 

  • Chase, T. N., Eng., N., and Gordon, E. K. (1976). Biochemical aids in the diagnosis of Parkinson's desease.Ann. Clin. Lab. Sci. 64–10.

    Google Scholar 

  • Curet, O., Dennis, T., and Scatton, B. (1985). The formation of deaminated metabolites of dopamine in the locus coeruleus depends upon noradrenergic neuronal activity.Brain Res. 335297–301.

    Google Scholar 

  • Curzon, G. (1975). CSF homovanillic acid: An index of dopaminergic activity.Adv. Neurol. 9349–357.

    Google Scholar 

  • Dahlström, A., and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons.Acta Physiol. Scand. 62 (Suppl 232): 1–55.

    Google Scholar 

  • Elsworth, J. D., Leahy, D. J., Roth, R. H., and Redmond, D. E., Jr. (1987). Homovanillic acid concentrations in brain, CSF and plasma as indicators of central dopamine function in primates.J. Neural. Trans. 6851–62.

    Google Scholar 

  • Goldstein, D. S., Stull, R., Eisenhofer, G., Sisson, J. C., Weder, A., Averbuch, S. D., and Keiser, H. R. (1986). Plasma levels of dihydroxyphenylalanine and catecholamines in patients with neuroblastoma or pheochromocytoma.Ann. Intern. Med. 105887.

    Google Scholar 

  • Goldstein, D. S., Udelsman, R., Eisenhofer, G., Stull, R., Keiser, H. R., and Kopin, I. J. (1987). Neuronal source of plasma dihydroxyphenylanine.J. Clin. Endocrinol. Metab. 64856–861.

    Google Scholar 

  • Hökfelt, T., Skagerberg, G., Skirboll, L., and Bjorklund, A. (1983). Combination of retrograde tracing and neurotransmitter histochemistry. InMethods in Chemical Neuroanatomy. Handbook of Chemical Neuroanatomy, Vol. 1 (A. B. Bjorklund and T. Hökfelt, Eds.), Elsevier, Amsterdam, pp. 228–285.

    Google Scholar 

  • Hökfelt, T., Johnsson, O., and Goldstein, D. S. (1984). Chemical anatomy of the brain.Science 2251326–1334.

    Google Scholar 

  • Hornykiewicz, O. (1966). Dopamine (3-hydroxytryamine) and brain function.Pharmocol. Rev. 18925–964.

    Google Scholar 

  • Karoum, F., Wyatt, R., and Costa, E. (1984). Estimation of the contribution of peripheral and central noradrenergic neurons to urinary 3-methoxy-4-hydroxyphenylglycol in the rat.Neuropharmacology 13165–176.

    Google Scholar 

  • Kendler, K. S., Heninger, G. R., and Roth, R. H. (1981). Brain contribution to the haloperidolinduced increase in plasma homovanillic acid.Eur. J. Pharmacol. 71321–326.

    Google Scholar 

  • Kopin, I. J. (1985). Catecholamine metabolism: Basic aspects and clinical significance.Pharmacol. Rev. 37333–364.

    Google Scholar 

  • Kopin, I. J., Bankiewicz, K. S., and Harvey-White, J. (1988). Effect of MPTP-induced parkinsonism in monkeys on the urinary excretion of HVA and MHPG during debrisoquin administration.Life Sci. (in press).

  • Maas, J. W., Contreras, S. A., Bowden, C. L., and Weintraub, S. E. (1985). Effects of debrisoquin on CSF and plasma HVA concentrations in man.36:165–176.

  • Maas, J. W., Hattox, S. E., Martin, D. M., and Landis, D. H. (1979). A direct method for determining dopamine synthesis and output of dopamine metabolites from brain in awake animals.J. Neurochem. 32839–843.

    Google Scholar 

  • Pettinger, W. A., Korn, A., Spieger, H., Solomon, H. M., Porcelinko, R., and Abrams, W. B. (1969). Debrisquin, a selective inhibitor of intraneuronal monoamine oxidase in man.Clin. Pharmacol. Ther. 10667–674.

    Google Scholar 

  • Portig, P. J., and Vogt, M. (1969). Release into the cerebral ventricles of substances with possible neurotransmitter functions in the caudate nucleus.J. Physiol. 204687–715.

    Google Scholar 

  • Post, R. M., Goodwin, F. K., Gordon, E., and Watkin, D. M. (1973). Amine metabolites in human cerebrospinal fluid: Effects of cord transection and spinal fluid block.Science 179897–899.

    Google Scholar 

  • Riddle, M. A., Leckman, J. F., Cohen, D. J., Anderson, M., Ort, S. I., Caruso, K. A., and Shaywitz, B. A. (1986). Assessment of central dopaminergic function using plasma-free homovanillic acid after debrisoquin administration.J. Neural Trans. 6731–43.

    Google Scholar 

  • Scatton, B., Dennis, T., and Cruet, O. (1984). Increase in dopamine and DOPAC levels in noradrenergic terminals after electrical stimulation of the ascending noradrenergic pathways.Brain Res. 298193–196.

    Google Scholar 

  • Scheinen, H. (1986). Enhanced noradrenergic neuronal activity increases homovanilic acid levels in cerebrospinal fluid.J. Neurochem. 47665–667.

    Google Scholar 

  • Shum, A., Van Loon, G. R., and Sole, M. J. (1982). Measurement of 1-dihydroxyphenylalanine in plasma and other biological fluids by high pressure liquid chromatography with electrochemical detection.Life Sci. 311541.

    Google Scholar 

  • Sternberg, D. E., Heninger, G. R., and R. H. (1983). Plasma homovanillic acid as an index of brain dopamine metabolism: Enhancement with debrisoquin.Life Sci. 322447–2452.

    Google Scholar 

  • Suzuki, H., Nakane, H., Kawamura, M., Yoshizawa, M., Takeshita, E., and Saruta, T. (1984). Excretion and metabolism of dopa and dopamine by isolated perfused rat kidney.Am. J. Physiol. 247285–290.

    Google Scholar 

  • Swann, A. C., Maas, J. W., Hattox, S. E., and Landis, H. (1980). Catecholamine metabolites in human plasma as indices of brain function: Effects of debrisoquin.Life Sci. 271857–1862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopin, I.J., White, J.H. & Bankiewicz, K. A new approach to biochemical evaluation of brain dopamine metabolism. Cell Mol Neurobiol 8, 171–179 (1988). https://doi.org/10.1007/BF00711243

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711243

Key words

Navigation