Skip to main content
Log in

Death of the central neuron: An electron microscopic study of thalamic retrograde degeneration following cortical ablation

  • Published:
Journal of Neurocytology

Summary

A series of twenty-seven rabbits were subjected to extensive aspiration lesions of limbic, striate and somato-sensory cortex, followed by electron microscopic examination of the antero-ventral, dorsal lateral geniculate and ventro-basal thalamic nuclei at various post-operative periods ranging from I to 238 days. Terminal degeneration occurs after 24 h and is seen in abundance during the second and third day. Neuronal perikaryal alterations become evident by day 2 and include the deterioration of endoplasmic reticulum with an apparent significant ribosomal loss, in addition to the incremental appearance of vacuoles and large homogeneous dense bodies. During the second and third post-operative weeks, a period in which the rate of neuronal depletion is maximal, many degenerating cells are characterized both by disruption of nuclear and cytoplasmic components, and the appearance of complex pleomorphic electron dense bodies thought to constitute sites of perikaryal autolysis. From the fourth to the thirty-fourth post-operative week, virtually all remaining neurons gradually disappear from the zones of degeneration.

Neuronal degeneration is accompanied by astrocytic hypertrophy and infiltration of the degenerating neuropil by mesodermal elements, tentatively designated as‘M’ cells (Matthews and Kruger, 1973b). However, despite this extensive non-neuronal reaction, little evidence for significant neuronophagia could be found. Loss of axoplasm, destruction of thalamo-cortical synaptic connections and massive deafferentation of thalamic neurons, partially owing to anterograde degeneration of cortico-fugal axons, are discussed as possible factors which influence the rate and severity of retrograde atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adey, W. R. (1951) An experimental study of the hippocampal connections of the cingulate cortex in the rabbit.Brain 74, 233–47.

    PubMed  Google Scholar 

  • Alksne, J. R., Blackstad, T. W., Walberg, F. andWhite, L. E. (1966) Electron microscopy of axon degeneration: A valuable tool in experimental neuroanatomy.Ergebnisse der Anatomie und Entwicklungs-Geschichte 39, 1–32.

    Google Scholar 

  • Andersen, P., Brooks, C. McC., Eccles, J. C. andSears, T. A. (1964a) The ventro-basal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and post-synaptic components.Journal of Physiology (London) 174, 348–69.

    Google Scholar 

  • Andersen, P., Brooks, C. McC., Eccles, J. C. andSears, T. A. (1964b) The ventro-basal complex of the thalamus: Types of cells, their responses and their functional organization.Journal of Physiology (London) 174, 370–99.

    Google Scholar 

  • Andersen, P., Junge, K. andSveen, O. (1967) Cortico-thalamic facilitation of somatosensory impulses.Nature (London) 214, 1011–12.

    Google Scholar 

  • Anderson, C. A. andWestrum, L. E. (1972) An electron microscopic study of the normal synaptic relationships and early degenerative changes in the rat olfactory tubercle.Zeitschrift für Zellforschung und mikroskopische Anatomie 127, 462–82.

    Google Scholar 

  • Andrews, J. M. andKruger, L. (1969) The distribution of Marchi granules in thalamic degeneration.Brain Research 15, 537–41.

    PubMed  Google Scholar 

  • Andrews, J. M. andMaxwell, D. S. (1969) Motor neuron diseases in animals. InMotor Neuron Diseases, Contemporary Neurology Symposia (edited byNorris, F. H. andKurland, L.), pp. 369–85. Grune and Stratton, New York.

    Google Scholar 

  • Barron, K. D., Chiang, T. Y., Daniels, A. C.andDoolin, P. F. (1971) Subcellular accompaniments of axon reaction in cervical motoneurons of the cat. InProgress in Neuropathology I (edited byZimmerman, H. M.), pp. 255–80. Grune and Stratton, New York.

    Google Scholar 

  • Barron, K. D., Daniels, A. C., Chiang, T. Y. andDoolin, P. F. (1970) Fine structure of chromatolytic motoneurons.Experimental and Molecular Pathology 12, 46–57.

    PubMed  Google Scholar 

  • Barron, K. D. andDoolin, P. F. (1969) Neuronal responses to axon injury. InMotor Neuron Diseases, Contemporary Neurology Symposia (edited byNorris, F. H. andKurland, L.), pp. 301–18. Grune and Stratton, New York.

    Google Scholar 

  • Barron, K. D., Oldershaw, J. B. andBernsohn, J. (1966) Hydrolase cytochemistry of retrograde neuronal degeneration in feline lateral geniculate body.Journal of Neuropathology and Experimental Neurology 25, 443–78.

    PubMed  Google Scholar 

  • Barron, K. D., Doolin, P. F. andOldershaw, J. B. (1967) Ultrastructural observations on retrograde atrophy of lateral geniculate body. I. Neuronal alterations.Journal of Neuropathology and Experimental Neurology 26, 300–26.

    PubMed  Google Scholar 

  • Bodian, D. (1964) An electron microscopic study of the monkey spinal cord.Bulletin of the Johns Hopkins Hospital 114, 13–39.

    PubMed  Google Scholar 

  • Bodian, D. (1971) Pre-synaptic organelles and junctional integrity.Journal of Cell Biology 48, 707–11.

    Google Scholar 

  • Caley, D. W. andMaxwell, D. S. (1968) An electron microscopic study of neurons during postnatal development of the rat cerebral cortex.Journal of Comparative Neurology 133, 17–44.

    PubMed  Google Scholar 

  • Chow, K. L. andDewson, J. H. (1966) Numerical estimates of neurons and glia in lateral geniculate body during retrograde degeneration.Journal of Comparative Neurology 128, 63–74.

    Google Scholar 

  • Cohen, E. andPappas, G. D. (1969) Dark profiles in apparently-normal central nervous system: A problem in the electron microscopic identification of early anterograde axonal degeneration.Journal of Comparative Neurology 136, 375–97.

    PubMed  Google Scholar 

  • Cowan, W. M. (1970) Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. InContemporary Research Methods in Neuroanatomy (edited byNauta, W. J. H. andEbbeson, S. O. E.). Springer-Verlag, New York.

    Google Scholar 

  • Cragg, B. G. (1962) Centrifugal fibres to the retina and olfactory bulb, and composition of the supraoptic commissures in the rabbit.Experimental Neurology 5, 406–27.

    Google Scholar 

  • Cragg, B. G. (1970) What is the signal for chromatolysis?Brain Research 23, 1–21.

    PubMed  Google Scholar 

  • Cragg, B. G. andHamlyn, L. H. (1959) Histologic connections and electrical and autonomic responses evoked by stimulation of the dorsal fornix in the rabbit.Experimental Neurology 1, 187–213.

    PubMed  Google Scholar 

  • Deduve, C. andWattiadx, R. (1966) Functions of lysosomes.Annual Review of Physiology 28, 435–92.

    PubMed  Google Scholar 

  • Domesick, V. B. (1969) Projections from the cingulate cortex in the rat.Brain Research 12, 296–320.

    PubMed  Google Scholar 

  • Eschner, J. andGlees, P. (1963) Free and membrane-bound ribosomes in maturing neurons of the chick and their possible functional significance.Experientia (Basel) 19, 301–3.

    Google Scholar 

  • Fry, F. J. andCowan, W. M. (1972) A study of retrograde cell degeneration in the lateral mammillary nucleus of the cat, with special reference to the role of axonal branching in the preservation of the cell.Journal of Comparative Neurology 144, 1–24.

    PubMed  Google Scholar 

  • Garey, H. J. J., Jones, E. G. andPowell, T. P. S. (1968) Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway.Journal of Neurology, Neurosurgery and Psychiatry 31, 135–57.

    Google Scholar 

  • Giolli, R. A. andGuthrie, M. D. (1971) Organization of subcortical projections of Visual Areas I and II in the rabbit. An experimental degeneration study.Journal of Comparative Neurology 142, 351–76.

    PubMed  Google Scholar 

  • Grafstein, B. andMurray, M. (1969) Transport of protein in goldfish optic nerve during regeneration.Experimental Neurology 25, 494–508.

    PubMed  Google Scholar 

  • Gray, E. G. (1964) The fine structure of normal and degenerating synapses of the central nervous system.Archives of Biology (Liége) 75, 285–99.

    Google Scholar 

  • Gray, E. G. andGuillery, R. W. (1966) Synaptic morphology in the normal and degenerating nervous system.International Review of Cytology 19, 111–82.

    PubMed  Google Scholar 

  • Guillery, R. W. (1959) Afferent fibers to the dorso-medial thalamic nucleus in the cat.Journal of Anatomy (London) 93, 403–19.

    Google Scholar 

  • Guillery, R. W. (1967) Patterns of fiber degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex.Journal of Comparative Neurology 130, 197–22.

    PubMed  Google Scholar 

  • Guth, L. andWindle, W. F. (1970) The enigma of central nervous regeneration.Experimental Neurology, Supplement 5, 1–43.

    Google Scholar 

  • Holtzman, E. andNovikoff, A. B. (1965) Lysosomes in rat sciatic nerve following crush.Journal of Cell Biology 27, 651–69.

    PubMed  Google Scholar 

  • Hubel, D. H. andWiesel, T. N. (1961) Integrative action in the cat's lateral geniculate body.Journal of Physiology (London) 155, 385–98.

    Google Scholar 

  • Jones, E. G. andPowell, T. P. S. (1969) An electron microscopic study of the mode of termination of cortico-thalamic fibres within the sensory relay nuclei of the thalamus.Proceedings of the Royal Society of London Series B 172, 173–85.

    Google Scholar 

  • Karlsson, U. (1966) Three dimensional studies of neurons in the lateral geniculate nucleus of the rat. II. Environment of perikarya and proximal parts of their branches.Journal of Ultrastructure Research 16, 482–504.

    PubMed  Google Scholar 

  • Kirkpatrick, J. B. (1968) Chromatolysis in the hypoglossal nucleus of the rat: An electron microscopic analysis.Journal of Comparative Neurology 132, 189–212.

    PubMed  Google Scholar 

  • Kruger, L. andHamori, J. (1970) An electron microscopic study of dendritic degeneration in the cerebral cortex resulting from laminar lesions.Experimental Brain Research 10, 1–16.

    Google Scholar 

  • Lavail, J. H. andLavail, M. M. (1972) Retrograde axonal transport in the central nervous system.Science 176, 1416–17.

    PubMed  Google Scholar 

  • Lieberman, A. R. (1971) The axon reaction: A review of the principal features of perikaryal responses to axon injury.International Review of Neurobiology 14, 49–124.

    PubMed  Google Scholar 

  • Lieberman, A. R. (1973) Some factors affecting retrograde neuronal responses to axonal lesions. InEssays on structure and function of nervous tissue (edited byBellairs, R. andGray, E. G.) in press. Oxford University Press, London.

    Google Scholar 

  • Mcewen, B. S. andGrafstein, B. (1968) Fast and slow components in axonal transport of protein.Journal of Cell Biology 38, 494–508.

    PubMed  Google Scholar 

  • Matthews, M. A. andKruger, L. (1973a) Electron microscopy of non-neuronal cellular changes accompanying neural degeneration in thalamic nuclei of the rabbit. I. Reactive hematogenous and perivascular elements within the basal lamina.Journal of Comparative Neurology 148, 285–312.

    PubMed  Google Scholar 

  • Matthews, M. A. andKruger, L. (1973b) Electron microscopy of non-neuronal cellular changes accompanying neural degeneration in thalamic nuclei of the rabbit. II. Reactive elements within the neuropil.Journal of Comparative Neurology 148, 313–46.

    PubMed  Google Scholar 

  • Maxwell, D. S. andKruger, L. (1964) Electron microscopy of radiation-induced laminar lesions in the cerebral cortex of the rat. InResponse of the nervous system to ionizing radiation (edited byHaley, T. J. andSnider, R. S.). Little, Brown, Boston.

    Google Scholar 

  • Maxwell, D. S. andKruger, L. (1965a) The fine structure ofastrocytes in the cerebral cortex and their responses to focal injury produced by heavy ionizing particles.Journal of Cell Biology 25, 141–58.

    Google Scholar 

  • Maxwell, D. S. andKruger, L. (1965b) Small blood vessels and the origin of phagocytes in the rat cerebral cortex following heavy particle irradiation.Experimental Neurology 12, 33–54.

    PubMed  Google Scholar 

  • Maxwell, D. S. andKruger, L. (1966) The reactive oligodendrocyte: An electron microscopic study of cerebral cortex following alpha particle irradiation.American Journal of Anatomy 118, 432–60.

    Google Scholar 

  • Meyer, D. D. andCole, M. (1970) Comparison of certain retrograde oxidative reactions after section of axons in central and peripheral nervous systems.Neurology (Minneapolis) 20, 918–24.

    Google Scholar 

  • Montero, V. M. andGuillery, R. W. (1968) Degeneration in the dorsal lateral geniculate nucleus of the rat following interruption of the retinal and cortical connections.Journal of Comparative Neurology 134, 211–42.

    PubMed  Google Scholar 

  • Morest, D. K. (1964) The normal architecture of the medial geniculate body of the cat.Journal of Anatomy (London) 98, 611–30.

    Google Scholar 

  • Morest, D. K. (1971) Dendrodendritic synapses of cells that have axons: The fine structure of the Golgi type II cell in the medial geniculate body of the cat.Zeitschrift für Anatomie und Entwicklungs-Geschichte 133, 216–46.

    Google Scholar 

  • Murray, M. andForman, D. S. (1971) Fine structural changes in goldfish retinal ganglion cells during axonal regeneration.Brain Research 32, 287–98.

    PubMed  Google Scholar 

  • Murray, M. andGrafstein, B. (1969) Changes in morphology and amino acid incorporation of regenerating goldfish optic neurons.Experimental Neurology 23, 544–60.

    PubMed  Google Scholar 

  • Novikoff, P. M., Novikoff, A. B., Quintana, N. andHouw, J. (1971) Golgi Apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia studied by thick section and thin section cytochemistry.Journal of Cell Biology 50, 859–86.

    PubMed  Google Scholar 

  • Peters, A. andPalay, S. L. (1966) The morphology of laminae A and A1 of the dorsal lateral geniculate body of the cat.Journal of Anatomy (London) 100, 451–86.

    Google Scholar 

  • Peters, A., Palay, S. L. andWebster, H. (1970)The fine structure of the nervous system. The cells and their processes. Hoeber Medical Division, Harper and Row, New York.

    Google Scholar 

  • Pinching, A. J. andPowell, T. P. S. (1971) Ultrastructural features of transneuronal cell degeneration in the olfactory system.Journal of Cell Science 8, 253–87.

    PubMed  Google Scholar 

  • Powell, T. P. S. andCowan, W. M. (1964) A note on retrograde fiber degeneration.Journal of Anatomy (London) 98, 579–85.

    Google Scholar 

  • Raisman, G., Cowan, W. M. andPowell, T. P. S. (1965) The extrinsic afferent, commissural and association fibers of the hippocampus.Brain Research 88, 963–96.

    Google Scholar 

  • Raisman, G., Cowan, W. M. andPowell, T. P. S. (1966) An experimental analysis of the efferent projection of the hippocampus.Brain Research 89, 83–108.

    Google Scholar 

  • Ralston, H. J. andChow, K. L. (1973) Synaptic reorganization in the degenerating lateral geniculate nucleus of the rabbit.Journal of Comparative Neurology 147, 321–50.

    PubMed  Google Scholar 

  • Ralston, H. J. andHerman, M. M. (1968) The fine structure of neurons and synapses in the ventrobasal thalamus of the cat.Brain Research 14, 77–97.

    Google Scholar 

  • Ramón Y Cajal, S. (1928)Degeneration and regeneration of the nervous system.II. Oxford University Press, London.

    Google Scholar 

  • Reich, E. (1963) Biochemistry of Actinomycins.Cancer Research 23, 1428–41.

    PubMed  Google Scholar 

  • Rio-Hortega, P. Del (1932) Microglia. InCytology and Cellular Pathology of the Nervous System.II (edited byPenfield, W.), pp. 482–543. Hoeber, New York.

    Google Scholar 

  • Rose, M. (1935) The rabbit diencephalon.Memoirs of the Polish Scientific Academy, Series B.

  • Rose, J. E. andWoolsey, C. N. (1943) A study of thalamo-cortical relations in the rabbit.Johns Hopkins Hospital Bulletin 73, 65–128.

    Google Scholar 

  • Rose, J. E. andWoolsey, C. N. (1948) Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit andcat.Journal of Comparative Neurology 89, 279–348.

    Google Scholar 

  • Rose, J. E. andWoolsey, C. N. (1949) Organization of the mammalian thalamus and its relationships to the cerebral cortex.Electroencephalography and Clinical Neurophysiology 1, 391–404.

    Google Scholar 

  • Scheibel, M. E., Davies, T. L. andScheibel, A. B. (1972) On dendrodendritic relations in the dorsal thalamus of the adult cat.Experimental Neurology 36, 519–29.

    PubMed  Google Scholar 

  • Scheibel, M. E. andScheibel, A. B. (1966a) Patterns of organization in specific and nonspecific thalamic fields. InThe Thalamus (edited byPurpura, D. P. andYahr, M. D.), pp. 13–46. Columbia University Press, New York.

    Google Scholar 

  • Scheibel, M. E. andScheibel, A. B. (1966b) The organization of the ventral anterior nucleus of the thalamus. A Golgi study.Brain Research 1, 250–68.

    PubMed  Google Scholar 

  • Torvik, A. andHeding, A. (1969) Effect of Actinomycin-D on retrograde nerve cell reaction. Further observations.Acta Neuropathologica (Berlin) 14, 62–71.

    Google Scholar 

  • Torvik, A. andSkjörten, F. (1971) Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions.Acta Neuropathologica (Berlin) 17, 248–64.

    Google Scholar 

  • Torvik, A. (1972) Phagocytosis of nerve cells during retrograde degeneration.Journal of Neuropathology and Experimental Neurology 31, 132–46.

    PubMed  Google Scholar 

  • Torvik, A. andSoreide, A. J. (1972) Nerve cell regeneration after axon lesions in newborn rabbits.Journal of Neuropathology and Experimental Neurology 31, 683–95.

    PubMed  Google Scholar 

  • Vaughn, J. E. andPeters, A. (1968) A third neuroglial cell type. An electron microscopic study.Journal of Comparative Neurology 133, 269–88.

    PubMed  Google Scholar 

  • Watanabe, T., Yanagisawa, K., Kanzaki, J. andKatsuki, Y. (1966) Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation.Experimental Brain Research 2, 302–17.

    Google Scholar 

  • Watson, W. E. (1965) An autoradiographic study of the incorporation of nucleic acid precursors by neurons and glia during nerve regeneration.Journal of Physiology (London) 180, 741–53.

    Google Scholar 

  • Watson, W. E. (1968) Observations on the nucleolar and total cell body nucleic acid of injured nerve cells.Journal of Physiology (London) 196, 655–76.

    Google Scholar 

  • Westrum, L. E. (1969) Electron microscopy of degeneration in the lateral olfactory tract and plexiform layer of the pre-pyriform cortex of the rat.Zeitschrift für Zellforschung und mickroscopische Anatomie 98, 157–87.

    Google Scholar 

  • Widen, L. andAjmone-Marsan, C. (1960) Effects of corticipetal and corticifugal impulses upon single elements of the dorsolateral geniculate nucleus.Experimental Neurology 2, 468–502.

    PubMed  Google Scholar 

  • Wiesel, T. N. andHubel, D. H. (1963) Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body.Journal of Neurophysiology 26, 978–93.

    PubMed  Google Scholar 

  • Wong-Riley, M. T. T. (1972) Changes in the dorsal lateral geniculate nucleus of the squirrel monkey after unilateral ablation of the visual cortex.Journal of Comparative Neurology 146, 519–48.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, M.A. Death of the central neuron: An electron microscopic study of thalamic retrograde degeneration following cortical ablation. J Neurocytol 2, 265–288 (1973). https://doi.org/10.1007/BF01104030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01104030

Keywords

Navigation