Skip to main content
Log in

Determination of 2-phenylethylamine in rat brain after MAO inhibitors, and in human CSF and urine by capillary GC and chemical ionization MS

  • Original Papers
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

A highly specific and sensitive method for the determination ofβ-phenylethylamine (PEA) in biological material is presented. It involves prepurification of the extracts on Sep-Pak C18 cartridges, derivatization with heptafluorobutyric acid anhydride, gas chromatography on 50 m capillary columns and quantification by chemical ionization mass spectrometry.

Using this method, levels of PEA in the rat brain and the effects of various monoamine oxidase (MAO) inhibitors thereon have been determined. PEA control levels were found to vary considerably: the lowest and highest values found were 0.4 and 12.5 ng/g tissue (n=25). Within one and the same control group, the variation was somewhat smaller. The preferential or specific inhibitors of MAO A, amiflamine, cimoxatone, CGP11305 A, moclobemide and toloxatone did not alter rat brain PEA even at high doses. In contrast, the preferential inhibitors of MAO B, deprenil, pargyline and MD 780236, as well as the nonselective agent tranylcypromine, caused strong (up to about 60-fold) increases. The threshold doses corresponded to those which caused about an 80 % inhibition of MAO B as measuredex vivo.

The method was also used to determine the concentration of PEA in human CSF (mean 17.3±3.3 ng/ml, range 3–45 ng/ml, n=15) and urine (males: mean 35±5μg/g creatinine, range 3.8–219μg/g, 78 control days of a total of 12 subjects; females: mean 35±6μg/g creat., range 2.7–266μg/g, 55 control days of a total of 8 subjects).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, H., Braestrup, C.: Mass fragmentographic demonstration of low amounts ofβ-phenylethylamine in human urine. Scand.J. Lab. Invest.37, 33–37 (1977).

    Google Scholar 

  • Antelman, S. M., Edwards, D. J., Lin, M.: Phenylethylamine: evidence for a direct, postsynaptic dopamine-receptor stimulating action. Brain Res.127, 317–322 (1977).

    Google Scholar 

  • Beckmann, H., Reynolds, G. P., Sandler, M., Waldmeier, P., Lauber, J., Riederer, P., Gattaz, W. F.: Phenylethylamine and phenylacetic acid in CSF of schizophrenics and healthy controls. Arch. Psychiatr. Nervenkr.232, 463–471 (1982).

    Google Scholar 

  • Bieck, P. R., Nilsson, E., Schick, C., Waldmeier, P. C., Lauber, J.: Urinary excretion of tryptamine in comparison to normetanephrine and beta-phenyl-ethylamine in human volunteers after subchronic treatment with different monoamine oxidase inhibitors. In: Neurobiology of the trace amines (Boulton, A. A., Baker, G.B., Dewhurst, W. G., Sandler, W., eds.), pp. 525–539. Humana Press Inc. 1984.

  • Blau, K., Claxton, I. M., Ismahan, G., Sandler, M.: Urinary phenylethylamine excretion: gas Chromatographic assay with electroncapture detection of the pentafluorobenzoyl derivative. J. Chromatogr.163, 135–142 (1979).

    Google Scholar 

  • Boulton, A. A., Milward, I.: Separation, detection and quantitative analysis of urinaryβ-phenylethylamine. J. Chromatogr.57, 287–296 (1971).

    Google Scholar 

  • Coutts, R. T., Baker, G. B., LeGatt, D. F., McIntosh, G. J., Hopkinson, G., Dewhurst, W. G.: Screening for amines of psychiatric interest in urine using gas chromatography with electron-capture detection. Progr. Neuro-Psychopharmacol.5, 565–568 (1981).

    Google Scholar 

  • Durden, D. A., Philips, S. R., Boulton, A. A.: Identification and distribution ofβ-phenylethylamine in the rat. Can. J. Biochem.51, 995–1002 (1973).

    Google Scholar 

  • Edwards, D. J., Doshi, P. S., Hanin, I.: Analysis of phenylethylamines by gas chromatography-chemical ionisation mass spectrometry. Anal. Biochem.96, 308–316 (1979).

    Google Scholar 

  • Fawcett, J., Sabelli, H., Gusovsky, F., Epstein, P., Javaid, J., Jeffriess, H.: Phenyl-ethylaminic mechanisms in maprotiline antidepressant effect. Fed. Proc.42, 1164 (abstr. 5110) (1983).

    Google Scholar 

  • Felner, A. E., Waldmeier, P. C.: Cumulative effects of irreversible MAO inhibitorsin vivo. Biochem. Pharmacol.28, 995–1002 (1979).

    Google Scholar 

  • Grob, K., Grob, G.: Capillary columns with immobilized stationary phases. II.Practical advantages and details of procedure. J. Chromatogr.213, 211–221 (1981).

    Google Scholar 

  • Grob, K., Grob, G., Grob, K.: Capillary columns with immobilized stationary phases. J. Chromatogr.211, 243–246 (1981).

    Google Scholar 

  • Hopkinson, G., Baker, G. B., Douglass, A. B., McKim, H. R., Dewhurst, W. G.: Analysis of urinary excretion patterns of bioactive amines and their metabolites in normal control subjects.Progr. Neuro-Psychopharmacology6, 495–498 (1982).

    Google Scholar 

  • Kamata, S., Imura, K., Okada, A., Kawashima, T., Yamatodani, A., Watanabe, T., Wada, H.: Simultaneous analyses of phenethylamine, phenylethanolamine, tyramine and octopamine in rat brain using fluorescamine. J. Chromatogr.231, 291–299 (1982).

    Google Scholar 

  • Karoum, F., Nasrallah, H., Potkin, S., Chuang, L., Moyer-Schwing, J., Phillips, I., Wyatt, R. J.: Mass fragmentography of phenylethylamine, m- and p-tyramine and related amines in plasma, cerebrospinal fluid, urine and brain. J. Neurochem.33, 201–212 (1979).

    Google Scholar 

  • Maitre, L., Felner, A., Waldmeier, P., Kehr, W.: Monoamine oxidase inhibition in brain and liver of rats treated with chlordimeform. J. Agric. Food Chem.26, 442–446 (1978).

    Google Scholar 

  • Martin, I. L., Baker, G. B.: A gas-liquid Chromatographic method for the estimation of 2-phenylethylamine in rat brain tissue. Biochem. Pharmacol.26, 1513–1516 (1977).

    Google Scholar 

  • Narasimhachari, N., Friedel, R. O.: Quantitation of biologically important primary amines as their isothiocyanate derivatives by gas chromatography using nitrogen detector and validation by selected ion monitoring. Clin. Chim. Acta.110, 235–243 (1981).

    Google Scholar 

  • Philips, S. R., Boulton, A. A.: The effects of monoamine oxidase inhibitors on some arylalkylamines in rat striatum. J. Neurochem.33, 159–167 (1979).

    Google Scholar 

  • Potkin, S. G., Karoum, F., Chuang, L. W., Cannon-Spoor, H. E., Phillips, I., Wyatt, R. J.: Phenylethylamine in paranoid chronic schizophrenia. Science206, 470–471 (1979).

    Google Scholar 

  • Reynolds, G. P.: Phenylethylamine-a role in mental illness? TINS2, 265–268 (1979).

    Google Scholar 

  • Reynolds, G. P., Gray, D. O.: A method for the estimation of 2-phenylethylamine in human urine by gas chromatography. Clin. Chim. Acta70, 213–217 (1976).

    Google Scholar 

  • Reynolds, G. P., Rausch, W. D., Riederer, P.: Effects of tranylcypromine stereoisomers on monoamine oxidation in man. Br. J. Clin. Pharmacol.9, 521–523 (1980).

    Google Scholar 

  • Saavedra, J. M.: Enzymatic isotopic assay for and presence ofβ-phenylethylamine in brain.J. Neurochem.22, 211–216 (1974).

    Google Scholar 

  • Sabelli, H. C., Fawcett, J., Gusovsky, F., Javaid, J., Edwards, J., Jeffriess, H.: Urinary phenyl acetate: a diagnostic test for depression? Science220, 1187–1188 (1983).

    Google Scholar 

  • Sandler, M., Ruthven, C. R., Goodwin, B. L., King, G. S., Pettit, B. R., Reynolds, G. P., Tyrer, S. P., Weller, M. P., Hirsch, S. R.: Raised cerebrospinal fluid phenylacetic acid concentrations: preliminary support for the phenylethylamine hypothesis of schizophrenia? Commun. Psychopharmacol.2, 199–202 (1978).

    Google Scholar 

  • Schweitzer, J. W., Friedhoff, A. J., Schwartz, R.: Phenethylamine in normal urine: failure to verify high values. Biol. Psychiat.10, 277–285 (1975).

    Google Scholar 

  • Slingsby, J. M., Boulton, A. A.: Separation and quantitation of some urinary arylalkylamines. J. Chromatogr.123, 51–56 (1976).

    Google Scholar 

  • Sloviter, R. S., Connor, J. D., Drust, E. G.: Serotonergic properties ofβ-phen-ethylamine in rats. Neuropharmacology19, 1071–1074 (1980).

    Google Scholar 

  • Suzuki, S., Yagi, K.: A fluorometric assay ofβ-phenylethylamine in rat brain. Anal. Biochem.75, 192–200 (1976).

    Google Scholar 

  • Suzuki, S., Yagi, K.: A fluorometric assay ofβ-phenylethylamine in human urine. Clin. Chim. Acta78, 401–410 (1977).

    Google Scholar 

  • Suzuki, O., Hattori, H.: Determination ofβ-phenylethylamine as its isothio-cyanate derivative in biological samples by gas chromatography mass spectrometry. Biomed. Mass Spectrom.10, 430–433 (1983).

    Google Scholar 

  • Waldmeier, P. C., Antonin, K. H., Feldtrauer, J. J., Grunenwald, C., Paul, E., Lauber, J., Bieck, P.: Urinary excretion of O-methylated catecholamines, tyramine, and phenylethylamine in human volunteers treated with tranylcypromine and CGP 11305 A. Eur. J. Clin. Pharmacol.25, 361–368 (1983).

    Google Scholar 

  • Waldmeier, P. C., Felner, A. E., Lauber, J.: Reversible monoamine oxidase inhibitors: relation between effects on enzymatic activity measuredex vivo and on amine metabolism. In: Monoamine oxidase and disease: prospects for therapy with reversible inhibitors (Dostert, P., Strolin-Benedetti, M., Tipton, K. F., eds.). London: Academic Press. 1984 (in press).

    Google Scholar 

  • Willner, J., Lefevre, H. F., Costa, E.: Assay by multiple ion detection of phenyl-ethylamine and phenylethanolamine in rat brain. J. Neurochem.23, 857–859 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauber, J., Waldmeier, P.C. Determination of 2-phenylethylamine in rat brain after MAO inhibitors, and in human CSF and urine by capillary GC and chemical ionization MS. J. Neural Transmission 60, 247–264 (1984). https://doi.org/10.1007/BF01249097

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249097

Keywords

Navigation