Skip to main content
Log in

Supraspinal circuitry mediating opioid antinociception: Antagonist and synergy studies in multiple sites

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Supraspinal opioid antinociception is mediated by sensitive brain sites capable of supporting this response following microinjection of opioid agonists. These sites include the ventrolateral periaqueductal gray (vlPAG), the rostral ventromedial medulla (RVM), the locus coeruleus and the amygdala. Each of these sites comprise an interconnected anatomical and physiologically relevant system mediating antinociceptive responses through regional interactions. Such interactions have been identified using two pharmacological approaches: (1) the ability of selective antagonists delivered to one site to block antinociception elicited by opioid agonists in a second site, and (2) the presence of synergistic antinociceptive interactions following simultaneous administration of subthreshold doses of opioid agonists into pairs of sites. Thus, the RVM has essential serotonergic, opioid, cholinergic and NMDA synapses that are necessary for the full expression of morphine antinociception elicited from the vlPAG, and the vlPAG has essential opioid synapses that are necessary for the full expression of opioid antinociception elicited from the amygdala. Further, the vlPAG, RVM, locus coeruleus and amygdala interact with each other in synergistically supporting opioid antinociception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abols IA, Basbaum AI. Afferent connections of the rostral medulla of the cat: A neural substrate for midbrain-medullary interactions. J Comp Neurol 201:285–297;1981.

    Article  Google Scholar 

  2. Aimone LD, Gebhart GF. Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid transmitter in the medial medulla. J Neurosci 6:1803–1813;1986.

    Google Scholar 

  3. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT. The brain nucleus locus coeruleus: Restricted afferent control of a broad efferent network. Science 234:734–737;1986.

    Google Scholar 

  4. Bajic D, Proudfit HK. Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405:359–379;1999.

    Article  Google Scholar 

  5. Bandler R, Shipley MT. Columnar organization in the midbrain periaqueductal gray: Modules for emotional expression. Trends Neurosci 17:379–389;1994.

    Article  PubMed  Google Scholar 

  6. Barbaro NM, Heinricher MM, Fields HL. Putative pain modulating neurons in rostral ventral medulla: Reflex-related activity predicts effects of morphine. Brain Res 366:203–210;1986.

    Article  PubMed  Google Scholar 

  7. Basbaum AI. Fields HL. Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338;1984.

    Article  PubMed  Google Scholar 

  8. Beitz AJ. The nuclei of origin of brainstem enkephalin and substance P projections to the rodent nucleus raphe magnus. Neuroscience 7:2753–2768;1982.

    Article  Google Scholar 

  9. Beitz AJ. The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience 7:133–159;1982.

    Article  Google Scholar 

  10. Beitz AJ. The sites of origin of brainstem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J Neurosci 2:829–842;1982.

    Google Scholar 

  11. Beitz AJ. Periaqueductal gray. In: Paxinos G, ed. The Rat Nervous System. New York, Academic Press, 173–182;1995.

    Google Scholar 

  12. Beitz AJ, Mullett MA, Weiner LL. The periaqueductal gray projections to the rat spinal trigeminal, raphe magnus, gigantocellular pars alpha, and paragigantocellular nuclei arise from separate neurons. Brain Res 288:307–314;1983.

    Google Scholar 

  13. Bodnar RJ, Paul D, Pasternak GW. Synergistic analgesic interactions between the periaqueductal gray and the locus coeruleus: Studies with the partial mu-1 agonist ethylketocyclazocine. Brain Res 558:224–230;1991.

    Article  Google Scholar 

  14. Bodnar RJ, Willians CL, Lee SJ, Pasternak GW. Role of mu1 opiate receptors in supraspinal opiate analgesia: A microinjection study. Brain Res 447:25–34;1988.

    PubMed  Google Scholar 

  15. Brodie MS, Proudfit HK. Hypoalgesia induced by the local injection of carbachol into the nucleus raphe magnus. Brain Res 291:337–342;1984.

    Article  Google Scholar 

  16. Cameron AA, Khan IA, Westlund KN, Willis WD. The efferent projections of the periaqueductal gray of the rat: APhaseolus vulgaris-leucoagglutinin study. II. Descending projections. J Comp Neurol 351:585–601;1995.

    Google Scholar 

  17. Clark FM, Proudfit HK. The projection of locus coeruleus neurons to the spinal cord in the rat determined by anterograde tracing combined with immunocytochemistry. Brain Res 538:231–245;1991.

    PubMed  Google Scholar 

  18. Clark FM, Proudfit HK. The projection of noradrenergic neurons in the A7 catecholamine cell group to the spinal cord in the rat demonstrated by anterograde tracing combined with immunocytochemistry. Brain Res 547:279–288;1991.

    PubMed  Google Scholar 

  19. Clark FM, Proudfit HK. Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception. Brain Res 540:105–115;1991.

    Article  Google Scholar 

  20. Clark FM, Proudfit HL. The projection of noradrenergic neurons in the A5 cell group to the spinal cord of the rat: Anatomical evidence that A5 neurons modulate nociception. Brain Res 616:200–210;1993.

    Article  Google Scholar 

  21. D'Amour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79;1941.

    Google Scholar 

  22. Ennis M, Shipley MT, Behbehani M, VanBockstaele EJ, Aston-Jones G. Projections from the periaqueductal gray to nucleus locus coeruleus and pericoerulear region: Anatomic and physiologic studies. J Comp Neurol 306:480–494;1991.

    PubMed  Google Scholar 

  23. Evans WO. A new technique for the investigation of some analgesic drugs on a reflexive behavior in the rat. Psychopharmacology 2:318–325;1961.

    Article  Google Scholar 

  24. Fang FG, Fields HL, Lee NM. Action at the mu receptor is sufficient to explain supraspinal analgesic effect of opiates. J Pharmacol Exp Ther 238:1039–1044;1986.

    PubMed  Google Scholar 

  25. Fields H, Basbaum AI. Brain control of spinal pain transmission neurons. Annu Rev Physiol 40:217–248;1978.

    PubMed  Google Scholar 

  26. Fields HL, Heinricher MM, Mason P. Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245;1991.

    Article  PubMed  Google Scholar 

  27. Gao K, Chen DO, Genzen JR, Mason P. Activation of serotonergic neurons in the raphe magnus is not necessary for morphine analgesis. J Neurosci 18:1860–1868;1998.

    PubMed  Google Scholar 

  28. Gao K, Kim YH, Mason P. Serotonergic pontomedullary neurons are not activated by antinociceptive stimulation in the periaqueductal gray. J Neurosci 17:3285–3292;1997.

    PubMed  Google Scholar 

  29. Gao K, Masone P. Somatodendritic and axonal anatomy of intracellularly labeled serotonergic neurons in the rat medulla. J Comp Neurol 389:309–328;1997.

    Article  PubMed  Google Scholar 

  30. Gebhart GF, Sandkuhler J, Thalhammer JG, Zimmerman M. Inhibition of spinal nociceptive information by stimulation in midbrain of the cat is blocked by lidocaine microinjected in nucleus raphe magnus and medullary reticular formation. J Neurophysiol 50:1446–1458;1983.

    PubMed  Google Scholar 

  31. Grossman ML, Basbaum AI, Fields HL. Afferent and efferent connections of the rat tail-flick reflex (a model to analyze pain control mechanisms). J Comp Neurol 206:9–16;1982.

    Article  PubMed  Google Scholar 

  32. Hasegawa Y, Kurachi M, Okuyama S, Araki H, Otomo S. 5HT-3 receptor antagonists inhibit the response of K opioid receptors in the morphine-reduced Straub tail. Eur J Pharmacol 190:399–401;1990.

    Article  PubMed  Google Scholar 

  33. Heinricher MM, McGaraughty S. Analysis of excitatory amino acid transmission within the rostral ventromedial medulla: Implications for circuitry. Pain 75:247–255;1998.

    Article  PubMed  Google Scholar 

  34. Heinricher MM, McGaraughty S, Farr DA. The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine. Pain 81:57–65;1999.

    Article  PubMed  Google Scholar 

  35. Heinricher MM, Morgan MM, Tortrici V, Fields HL. Disinhibition of off-cells and antinociception produced by an opioid action within the rostral ventromedial medulla. Neuroscience 63:279–288;1994.

    PubMed  Google Scholar 

  36. Heinricher MM, Roychowdhury SM. Reflex-related activation of putative pain facilitating neurons in rostral ventromedial medulla requires excitatory amino acid transmission. Neuroscience 78:1159–1165;1997.

    PubMed  Google Scholar 

  37. Heinricher MM, Tortorici V. Interference with GABA transmission in the rostral ventromedial medulla: Disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience 63:533–546;1994.

    PubMed  Google Scholar 

  38. Helmstetter FJ, Bellgowan PSF, Poore LH. Microinfusions of mu, but not delta or kappa opioid agonists into the basolateral amygdala results in inhibition of the tail-flick reflex in pentobarbital-anesthetized rats. J Pharmacol Exp Ther 275:381–388;1995.

    PubMed  Google Scholar 

  39. Helmstetter FJ, Bellgowan PS, Tershner SA. Inhibition of the tail-flick reflex following microinjection of morphine into the amygdala. Neuroreport 4:471–474;1993.

    PubMed  Google Scholar 

  40. Helmstetter FJ, Tershner SA, Poore LH, Bellgowan PSF. Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Brain Res 779:104–108;1998.

    Article  PubMed  Google Scholar 

  41. Iwamoto ET. Antinocicpetion after nicotine administration into the mesopontine tegmentum of rats: Evidence for muscarinic actions. J Pharmacol Exp Ther 251:412–421;1989.

    PubMed  Google Scholar 

  42. Jensen TS, Yaksh TL. Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res 321:287–289;1984.

    Article  PubMed  Google Scholar 

  43. Jensen TS, Yaksh TLI. Comparison of antinociceptive action of morphine in the periaqueductal gray, medial and paramedial medulla in rat. Brain Res 363:99–113;1986.

    Article  PubMed  Google Scholar 

  44. Kiefel JM, Cooper ML, Bodnar RJ. Inhibition of mesencephalic morphine analgesia by methysergide in the medial ventral medulla of rats. Physiol Behav 51:201–205;1992.

    Article  Google Scholar 

  45. Kiefel JM, Cooper ML, Bodnar RJ. Serotonin receptor subtype antagonists in the medial ventral medulla inhibit mesencephalic opiate analgesia. Brain Res 597:331–338;1992.

    Article  PubMed  Google Scholar 

  46. Kiefel JM, Rossi GC, Bodnar RJ. Medullary mu and delta opioid receptors modulate mesencephalic morphine analgesia in rats. Brain Res 624:151–160;1993.

    Article  PubMed  Google Scholar 

  47. Klamt JG, Prado WA. Antinociception and behavioral changes induced by carbachol microinjected into identified sites of the rat brain. Brain Res 549:9–18;1991.

    Article  PubMed  Google Scholar 

  48. Krettak JE, Price JL. Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178:225–254;1978.

    Article  PubMed  Google Scholar 

  49. Ma Q-P, Shi Y-S, Han J-S. Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception. Brain Res 583:292–295;1992.

    PubMed  Google Scholar 

  50. Manning BH, Mayer DJ. The central nucleus of the amygdala contributes to the production of morphine antinociception in the tail-flick test. J Neurosci 15:8199–8213;1995.

    PubMed  Google Scholar 

  51. Manning BH, Mayer DJ. The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test. Pain 63:141–152;1995.

    Article  PubMed  Google Scholar 

  52. Mason P. Physiological identification of pontomedullary serotonergic neurons in the rat. J Neurophysiol 77:1087–1098;1997.

    PubMed  Google Scholar 

  53. Mitchell JM, Lowe D, Fields HL. The contribution of the rostral ventromedial medulla to the antinociceptive effects of systemic morphine in restrained and unrestrained rats. Neuroscience 87:123–133;1998.

    Article  PubMed  Google Scholar 

  54. Monroe PJ, Hawranko AA, Smith DL, Smith DJ. Biochemical and pharmacological characterization of multiple beta-endorphinergic antinociceptive systems in the rat periaqueductal gray. J Pharmacol Exp Ther 276:65–93;1996.

    PubMed  Google Scholar 

  55. Monroe PJ, Smith DL, Smith DJ. Beta-endorphin dose-dependently activates multiple spinopetal antinociceptive pathways following its microinjection into the rat periaqueductal gray: Comparison with those activated by morphine. Analgesia 3:21–26;1997.

    Google Scholar 

  56. Morgan MM, Heinricher MM, Fields HL. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Neuroscience 47:863–874;1992.

    Article  PubMed  Google Scholar 

  57. Pan ZZ, Fields HL. Endogenous opioid-mediated inhibition of putative pain-modulating neurons in rat rostal ventromedial medulla. Neuroscience 74:855–862;1996.

    Article  PubMed  Google Scholar 

  58. Paul D, Phillips AG. Selective effects of pirenpirone on analgesia produced by morphine or electrical stimulation at sites in the nucleus raphe magnus and periaqueductal gray. Psychopharmacology 88:172–176;1986.

    Google Scholar 

  59. Pavlovic ZW, Bodnar RJ. Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats. Brain Res 779:158–169;1998.

    Article  PubMed  Google Scholar 

  60. Pavlovic ZW, Bodnar RJ. U50488H-induced analgesia in the amygdala: Test-specific effects and blockade by opioid antagonists in the periaqueductal gray. Analgesia 3:223–230;1998.

    Google Scholar 

  61. Pavlovic Z, Cooper ML, Bodnar RJ. Opioid antagonists in the periaqueductal gray inhibit morphine and beta-endorphin analgesia elicited from the amygdala of rats. Brain Res 741:13–26;1996.

    Article  PubMed  Google Scholar 

  62. Pazos A, Cortes R, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249;1985.

    Article  PubMed  Google Scholar 

  63. Potrebic SB, Fields HL, Mason P. Serotonin immunoreactivity is contained in one physiological cell class in the rat rostral ventromedial medulla. J Neurosci 14:1655–1665;1994.

    PubMed  Google Scholar 

  64. Potrebic SB, Mason P, Fields HL. The density and distribution of serotonergic appositions onto identified neurons in the rat rostral ventromedial medulla. J Neurosci 15:3273–3283;1995.

    PubMed  Google Scholar 

  65. Proudfit HK. Reversible inactivation of raphe magnus neurons: Effects on nociceptive threshold and morphine-induced analgesia. Brain Res 201:459–464;1980.

    Article  PubMed  Google Scholar 

  66. Proudfit HK, Clark FM. The projections of locus coeruleus neurons to the spinal cord. Prog Brain Res 88:123–141;1991.

    PubMed  Google Scholar 

  67. Rodgers RJ. Elevation of aversive threshold in rats by intra-amygdaloid injection of morphine sulphate. Pharmacol Biochem Behav 6:385–390;1977.

    Article  PubMed  Google Scholar 

  68. Roerig SC, Fujimoto JM. Multiplicative interactions between intrathecally and intracerebroventricularly administered mu opioid agonists but limited interactions between delta and kappa agonists for antinociception in mice. J Pharmacol Exp Ther 249:762–767;1989.

    PubMed  Google Scholar 

  69. Roerig SC, Fujimoto JM, Tseng LF. comparisons of descending pain inhibitory pathways activated by beta-endorphin and morphine as characterized by supraspinal and spinal antinociceptive interactions in mice. J Pharmacol Exp Ther 247:1107–1113;1988.

    PubMed  Google Scholar 

  70. Rossi GC, Pasternak GW, Bodnar RJ. Synergistic brainstem interactions for morphine analgesia. Brain Res 624:171–180;1993.

    Article  PubMed  Google Scholar 

  71. Rossi GC, Pasternak GW, Bodnar RJ. Mu and delta opioid synergy between the periaqueductal gray and the rostro-ventral medulla. Brain Res 665:85–93;1994.

    PubMed  Google Scholar 

  72. Roychowdhury SM, Fields HL. Endogenous opioids acting at a medullary mu-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Neuroscience 74:863–872;1996.

    Article  PubMed  Google Scholar 

  73. Roychowdhury SM, Heinricher MM. Effects of iontophoretically applied serotonin on three classes of physiological characterized putative pain modulating neurons in the rostral ventromedial medulla of lightly anesthetized rats. Neurosci Lett 226:136–138;1997.

    Article  PubMed  Google Scholar 

  74. Satoh M, Kubota A, Iwama T, Wada T, Yasui M, Fujibayashi K, Takagi H. Comparison of analgesic potencies of mu, delta and kappa agonists locally applied to various CNS regions relevant to analgesia in rats. Life Sci 33:689–692;1983.

    Article  PubMed  Google Scholar 

  75. Satoh M, Oku R, Akaike A. Analgesia produced by microinjection ofL-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents. Brain Res 261:361–364;1983.

    PubMed  Google Scholar 

  76. Segal M, Sandberg D. Analgesia produced by electrical stimulation of catecholamine nuclei in the rat brain. Brain Res 123:369–372;1977.

    Article  PubMed  Google Scholar 

  77. Skinner K, Fields HL, Basbaum AI, Mason P. GABA-immunoreactive boutons contact identified OFF and ON cells in the nucleus raphe magnus. J Comp Neurol 378:196–204;1997.

    PubMed  Google Scholar 

  78. Smith DJ, Perotti JM, Crisp T, Cabral MEY, Long JT, Scalziti JN. The mu receptor is responsible for descending pain inhibition originating in the periaqueductal gray region of the rat brain. Eur J Pharmacol 156:47–54;1988.

    Article  PubMed  Google Scholar 

  79. Smith DJ, Robertson B, Monroe PJ. Antinociception from the administration of beta-endorphin into the periaqueductal gray is enhanced while that of morphine is inhibited by barbiturate anesthesia. Neurosci Lett 146:143–146;1992.

    Article  PubMed  Google Scholar 

  80. Smith DJ, Robertson B, Monroe PJ, Leedham JA, Cabral JDY. Opioid receptors mediating antinociception from beta-endorphin and morphine in the periaqueductal gray. Neuropharmacology 31:1137–1150;1992.

    Article  PubMed  Google Scholar 

  81. Spinella M, Cooper ML, Bodnar RJ. Excitatory amino acid antagonists in the rostral ventromedial medulla inhibit mesencephalic morphine analgesia in rats. Pain 64:545–552;1996.

    PubMed  Google Scholar 

  82. Spinella M, Schaefer LA, Bodnar RJ. Ventral medullary mediation of mesencephalic morphine analgesia by muscarinic and nicotinic cholinergic receptor antagonists in rats. Analgesia 3:119–130;1997.

    Google Scholar 

  83. Spinella M, Znamensky V, Moroz M, Ragnauth A, Bodnar RJ. Actions of NMDA and cholinergic receptor antagonists in the rostral ventromedial medulla upon beta-endorphin analgesia elicited from the ventrolateral periaqueductal gray. Brain Res 829:151–159;1999.

    Article  PubMed  Google Scholar 

  84. Tershner SA, Helmstetter FJ. Spinal antinociception following stimulation of the amygdala depends on opioid receptors in the ventral periaqueductal gray. Soc Neurosci Abstr 21:1169;1995.

    Google Scholar 

  85. Tseng LF. Mechanisms of beta-endorphin-induced antinociception. In: Tseng LF, ed. The Pharmacology of Opioid Peptides. Chur, Hardwood, 249;1995.

  86. Urban MO, Smith DJ. Role of neurotensin in the nucleus raphe magnus in opioid-induced antinociception from the periaqueductal gray. J Pharmacol Exp Ther 265:580–586;1993.

    PubMed  Google Scholar 

  87. Urban MO, Smith DJ. Localization of the antinociceptive and antianalgesic effects of neurotensin within the rostral ventromedial medulla. Neurosci Lett 174:21–25;1994.

    Article  PubMed  Google Scholar 

  88. Urban MO, Smith DJ. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray. Brain Res 652:9–16;1994.

    Article  PubMed  Google Scholar 

  89. Van Bockstaele EJ, Aston-Jones G, Pierbone VA. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat. J Comp Neurol 309:305–327;1991.

    Article  PubMed  Google Scholar 

  90. Van Bockstaele EJ, Pieribone VA, Aston-Jones G. Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: Retrograde and anterograde tracing studies. J Comp Neurol 290:561–584;1989.

    Article  PubMed  Google Scholar 

  91. Van Praag H, Frenk H. The role of glutamate in opiate descending inhibition of nociceptive spinal reflexes. Brain Res 524:101–105;1990.

    Article  PubMed  Google Scholar 

  92. Waeber C, Dixon K, Hoyer D, Palacios JM. Localization by autoradiography of 5HT-3 receptors in the mouse CNS. Eur J Pharmacol 151:351–352;1988.

    Article  PubMed  Google Scholar 

  93. Yeomans DC, Clark FM, Paice JA, Proudfit HK. Antinociception induced by electrical stimulation of spinally-projecting noradrenergic neurons in the A7 catecholamine cell group of the rat. Pain 48:449–461;1992.

    Article  PubMed  Google Scholar 

  94. Yeomans DC, Proudfit HK. Antinociception induced by microinjection of substance P into the A7 catecholamine cell group in the rat. Neuroscience 49:681–691;1992.

    Article  PubMed  Google Scholar 

  95. Yeung JC, Rudy TA. Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive actions as revealed by concurrent intrathecal and intracerebroventricular injections of morphine. J Pharmacol Exp Ther 215:633–642;1980.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodnar, R.J. Supraspinal circuitry mediating opioid antinociception: Antagonist and synergy studies in multiple sites. J Biomed Sci 7, 181–194 (2000). https://doi.org/10.1007/BF02255465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255465

Key Words

Navigation