Skip to main content
Log in

Genistein inhibits the inward rectifying potassium current in guinea pig ventricular myocytes

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Genistein is an isoflavone with potent inhibitory activity on protein tyrosine kinase. Previous studies have shown that genistein has additional effects, among which the direct blocking effects on various ionic channels have recently been disclosed. Using whole-cell voltage clamp and current clamp techniques, we demonstrate that micromolar concentrations of genistein dose-dependently and reversibly inhibit the inward rectifying K+ current, and depolarize the resting membrane potential, resulting in abnormal automaticity in guinea pig ventricular myocytes. Interestingly, another potent tyrosine kinase inhibitor, tyrphostin 51, did not produce the same inhibitory effect, while the inactive analogue of genistein, daidzein, had a similar blocking effect. We suggest that genistein directly blocks the inward rectifying K+ current in ventricular myocytes, and one should be cautious of its proarrhythmic effect in clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackerman MJ, Clapham DE. Cardiac chloride channels. Trends Cardiovasc Med 3:23–28;1993.

    Google Scholar 

  2. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595;1987.

    PubMed  Google Scholar 

  3. Backx PH, Marban E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res 72:890–900;1993.

    PubMed  Google Scholar 

  4. Chiang CE, Chen SA, Chang MS, Lin CI, Luk HN. Genistein directly inhibits L-type calcium currents but potentiates cAMP-dependent chloride currents in cardiomyocytes. Biochem Biophys Res Commun 223:598–603;1996.

    PubMed  Google Scholar 

  5. Chiang CE, Chen SA, Chang MS, Lin CI, Luk HN. Genistein directly induces cardiac CFTR chloride current by a tyrosine kinase-independent and protein kinase A-independent pathway in guinea pig ventricular myocytes. Biochem Biophys Res Commun 235:74–78;1997.

    Article  PubMed  Google Scholar 

  6. French PJ, Bijman J, Bot AG, Boomaars WE, Scholte BJ, de Jonge HR. Genistein activates CFTR Cl channels via a tyrosine kinase- and protein phosphatase-independent mechanism. Am J Physiol 273:C747-C753;1997.

    PubMed  Google Scholar 

  7. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100;1981.

    Article  Google Scholar 

  8. Harvey RD, Ten Eick RE. Characterization of the inward-rectifying potassium current in cat ventricular myocytes. J Gen Physiol 91:593–615;1988.

    PubMed  Google Scholar 

  9. Hool LC, Middleton LM, Harvey RD. Genistein increases the sensitivity of cardiac ion channels to beta-adrenergic receptor stimulation. Circ Res 83:33–42;1998.

    PubMed  Google Scholar 

  10. Hume JR, Uehara A. Ionic basis of the different action potential configurations of single guinea-pig atrial and ventricular myocytes. J Physiol 368:525–544;1985.

    PubMed  Google Scholar 

  11. Illek B, Zhang L, Lewis NC, Moss RB, Dong JY, Fischer H. Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein. Am J Physiol 277:C833-C839;1999.

    PubMed  Google Scholar 

  12. Kurachi Y. Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol 366:365–385;1985.

    PubMed  Google Scholar 

  13. Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325:156–159;1987.

    Article  PubMed  Google Scholar 

  14. Mitra R, Morad M. A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol 249:H1056-H1060;1985.

    PubMed  Google Scholar 

  15. Nichols MR, Morimoto BH. Tyrosine kinase-independent inhibition of cyclic-AMP phosphodiesterase by genistein and tyrphostin 51. Arch Biochem Biophys 366:224–230;1999.

    PubMed  Google Scholar 

  16. Obayashi K, Horie M, Washizuka T, Nishimoto T, Sasayama S. On the mechanism of genistein-induced activation of protein kinase A-dependent Cl conductance in cardiac myocytes. Pflügers Arch 438:269–277;1999.

    Article  Google Scholar 

  17. Paillart C, Carlier E, Guedin D, Dargent B, Couraud F. Direct block of voltage-sensitive sodium channels by genistein, a tyrosine kinase inhibitor. J Pharmacol Exp Ther 280:521–526;1997.

    PubMed  Google Scholar 

  18. Porter AC, Vaillancourt RR. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 17:1343–1352;1998.

    Article  PubMed  Google Scholar 

  19. Sadoshima J, Izumo S. Mechanical stretching rapidly activates multiple signal transduction pathways in cardiac myocytes: Potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692;1993.

    PubMed  Google Scholar 

  20. Sadoshima J, Izumo S. The heterotrimeric G q protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. EMBO J 15:775–787;1996.

    PubMed  Google Scholar 

  21. Wang F, Zeltwanger S, Yang IC, Nairn AC, Hwang TC. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen Physiol 111:477–490;1998.

    Article  PubMed  Google Scholar 

  22. Washizuka T, Horie M, Obayashi K, Sasayama S. Does tyrosine kinase modulate delayed-rectifier K channels in guinea pig ventricular cells? Heart Vessels Suppl 12:173–174;1997.

    Google Scholar 

  23. Washizuka T, Horie M, Obayashi K, Sasayama S. Genistein inhibits slow component delayed-rectifier K currents via a tyrosine kinase-independent pathway. J Mol Cell Cardiol 30:2577–2590;1998.

    PubMed  Google Scholar 

  24. Weinreich F, Wood PG, Riordan JR, Nagel G. Direct action of genistein on CFTR. Pflügers Arch 434:484–491;1997.

    Article  Google Scholar 

  25. Yokoshiki H, Sumii K, Sperelakis N. Inhibition of L-type calcium current in rat ventricular cells by the tyrosine kinase inhibitor, genistein, and its inactive analog, daidzein. J Mol Cell Cardiol 28:807–814;1996.

    Article  PubMed  Google Scholar 

  26. Zhou SS, Hazama A, Okada Y. Tyrosine kinase-independent extracellular action of genistein on the CFTR Cl channel in guinea pig ventricular myocytes and CFTR-transfected mouse fibroblasts. Jpn J Physiol 48:389–396;1998.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, CE., Luk, HN., Chen, LL. et al. Genistein inhibits the inward rectifying potassium current in guinea pig ventricular myocytes. J Biomed Sci 9, 321–326 (2002). https://doi.org/10.1007/BF02256587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256587

Key Words

Navigation