Skip to main content

Advertisement

Log in

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in central nervous system inflammation

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In a wide variety of acute and chronic central nervous system (CNS) disorders, inflammatory processes contribute to the damage of brain cells and progression of the disease. Along with other regulatory cytokines, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is involved in the pathology of multiple sclerosis (MS) and murine experimental autoimmune encephalomyelitis (EAE), bacterial meningitis (BM), HIV encephalitis (HIVE), stroke and Alzheimer's disease (AD). In these conditions, TRAIL is released within the brain mainly by activated microglia and leukocytes infiltrating from the blood stream. TRAIL promotes apoptosis of parenchymal cells in MS/EAE, HIVE, AD and stroke through interaction with TRAIL death receptors expressed on these cells. Frequently, cells in the diseased brain display increased susceptibility to apoptosis induction by TRAIL due to upregulation of death receptors and downregulation of decoy receptors. On the other hand, TRAIL inhibits the proliferation of encephalitogenic T cells in EAE, and it is involved in the clearance of infected brain macrophages in HIVE and of activated neutrophils in BM by interaction with their death receptors. Especially in BM, the ability of TRAIL to limit an acute granulocyte-driven inflammation carries significant neuroprotective potential. Given the diversity of beneficial and harmful effects in the immune and nervous system, TRAIL is a double-edged sword in diseases involving CNS inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  PubMed  CAS  Google Scholar 

  2. Wiley SR, Schooley K, Smolak PJ et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    Article  PubMed  CAS  Google Scholar 

  3. Pitti RM, Marsters SA, Ruppert S et al (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690

    Article  PubMed  CAS  Google Scholar 

  4. Bouralexis S, Findlay DM, Evdokiou A (2005) Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis 10:35–51

    Article  PubMed  CAS  Google Scholar 

  5. Nitsch R, Bechmann I, Deisz RA et al (2000) Human brain-cell death induced by tumour- necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet 356:827–828

    Article  PubMed  CAS  Google Scholar 

  6. Pan G, O'Rourke K, Chinnaiyan AM et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  PubMed  CAS  Google Scholar 

  7. Walczak H, Degli-Esposti MA, Johnson RS et al (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16:5386–5397

    Article  PubMed  CAS  Google Scholar 

  8. Chaudhary PM, Eby M, Jasmin A et al (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kB pathway. Immunity 7:821–830

    Article  PubMed  CAS  Google Scholar 

  9. MacFarlane M, Ahmad M, Srinivasula SM et al (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 2:25417–25420

    Article  Google Scholar 

  10. Wu GS, Burns TF, McDonald ER (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17:141–143

    Article  PubMed  CAS  Google Scholar 

  11. Wu GS, Burns TF, Zhan Y (1999) Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 59:2770–2775

    PubMed  CAS  Google Scholar 

  12. Walczak H, Sprick MR (2001) Biochemistry and function of the DISC. Trends Biochem Sci 26:452–453

    Article  PubMed  CAS  Google Scholar 

  13. Sprick MR, Weigand MA, Rieser E et al (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609

    Article  PubMed  CAS  Google Scholar 

  14. Kischkel FC, Lawrence DA, Chuntharapai A et al (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620

    Article  PubMed  CAS  Google Scholar 

  15. Bodmer JL, Holler N, Reynard S et al (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2:241–243

    Article  PubMed  CAS  Google Scholar 

  16. Kischkel FC, Lawrence DA, Tinel A et al (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 276:46639–46646

    Article  PubMed  CAS  Google Scholar 

  17. Kataoka T, Schroter M, Hahne M et al (1998) FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol 161:3936–3942

    PubMed  CAS  Google Scholar 

  18. Luo X, Budihardjo I, Zou H et al (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

  19. Degli-Esposti MA, Dougall WC, Smolak PJ et al (1997) The novel receptor TRAIL-R4 induces NF-κB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7:813–820

    Article  PubMed  CAS  Google Scholar 

  20. Sheridan JP, Marsters SA, Pitti PM et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  PubMed  CAS  Google Scholar 

  21. Emery JG, McDonnell P, Burke MB et al (1998) Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 273:14363–14367

    Article  PubMed  CAS  Google Scholar 

  22. Schulze-Osthoff K, Ferrari D, Loas M et al (1998) Apoptosis signalling by death receptors. Eur J Biochem 254:439–459

    Article  PubMed  CAS  Google Scholar 

  23. Kimberley FC, Screaton GR (2004) Following a TRAIL: update on a ligand and its five receptors. Cell Res 14:359–372

    Article  PubMed  CAS  Google Scholar 

  24. Mérino D, Lalaoui N, Morizot A et al (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol 26:7046–7055

    Article  PubMed  CAS  Google Scholar 

  25. Clancy L, Mruk K, Archer K et al (2005) Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci U S A 102:18099–18104

    Article  PubMed  CAS  Google Scholar 

  26. Ozören N, El-Deiry WS (2002) Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 4:551–557

    Article  PubMed  CAS  Google Scholar 

  27. Deveraux Q, Roy N, Stennicke HR et al (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223

    Article  PubMed  CAS  Google Scholar 

  28. Lin Y, Devin A, Cook A et al (2000) The death domain kinase RIP is essential for TRAIL(Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase. Mol Cell Biol 20:6638–6645

    Article  PubMed  CAS  Google Scholar 

  29. Jin Z, El-Deiry WS (2006) Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol Cell Biol 26:8136–8148

    Article  PubMed  CAS  Google Scholar 

  30. Wajant H (2004) TRAIL and NFkappaB signalling—a complex relationship. Vitam Horm 67:101–132

    Article  PubMed  CAS  Google Scholar 

  31. Hu WH, Johnson H, Shu HB (1999) Tumor necrosis factor-related apoptosis-inducing ligand receptors signal NF-κB and JNK activation and apoptosis through distinct pathways. J Biol Chem 274:30603–30610

    Article  PubMed  CAS  Google Scholar 

  32. Soderstrom TS, Poukkula M, Holmstrom TH et al (2002) Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in activated T cells abrogates TRAIL-induced apoptosis upstream of the mitochondrial amplification loop and caspase-8. J Immunol 169:2851–2860

    PubMed  CAS  Google Scholar 

  33. Zhang XD, Borrow JM, Zhang XY et al (2003) Activation of ERK1/2 protects melanoma cells from TRAIL-induced apoptosis by inhibiting Smac/DIABLO release from mitochondria. Oncogene 22:2869–2881

    Article  PubMed  CAS  Google Scholar 

  34. Zauli G, Sancilio S, Cataldi A et al (2005) PI-3 K/Akt and NF-kappaB/IkappaBalpha pathways are activated in Jurkat T cells in response to TRAIL treatment. J Cell Physiol 202:900–911

    Article  PubMed  CAS  Google Scholar 

  35. Bernard D, Quatannens B, Vandenbunder B et al (2001) Rel/NF-κB transcription factors protect against tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by up-regulating the TRAIL decoy receptor DcR1. J Biol Chem 276:27322–27328

    Article  PubMed  CAS  Google Scholar 

  36. Mariani SM, Krammer PH (1998) Surface expression of TRAIL/Apo-2 ligand in activated mouse T and B cells. Eur J Immunol 28:1492–1498

    Article  PubMed  CAS  Google Scholar 

  37. Zamai L, Ahmad M, Bennett IM et al (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380

    Article  PubMed  CAS  Google Scholar 

  38. Griffith TS, Wiley SR, Kubin MZ et al (1999) Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 189:1343–1354

    Article  PubMed  CAS  Google Scholar 

  39. Lu G, Janjic BM, Janjic J et al (2002) Innate direct anticancer effector function of human immature dendritic cells. II. Role of TNF, lymphotoxin-alpha(1) beta(2), Fas ligand, and TNF-related apoptosis-inducing ligand. J Immunol 168:1831–1839

    PubMed  CAS  Google Scholar 

  40. Kayagaki N, Yamaguchi N, Nakayama M et al (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J Exp Med 189:1451–1460

    Article  PubMed  CAS  Google Scholar 

  41. Sato K, Hida S, Takayanagi H et al (2001) Antiviral response by natural killer cells through TRAIL gene induction by IFN-alpha/beta. Eur J Immunol 31:3138–3146

    Article  PubMed  CAS  Google Scholar 

  42. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–348

    Article  PubMed  CAS  Google Scholar 

  43. Ehrlich S, Infante-Duarte C, Seeger B et al (2003) Regulation of soluble and surface-bound TRAIL in human T cells, B cells, and monocytes. Cytokine 24:244–253

    Article  PubMed  CAS  Google Scholar 

  44. Cassatella MA (2006) On the production of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 L) by human neutrophils. J Leukoc Biol 79:1140–1149

    Article  PubMed  CAS  Google Scholar 

  45. Renshaw SA, Parmar JS, Singleton V et al (2003) Acceleration of human neutrophil apoptosis by TRAIL. J Immunol 170:1027–1033

    PubMed  CAS  Google Scholar 

  46. Tecchio C, Huber V, Scapini P et al (2004) IFN alpha-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) displaying apoptotic activity on leukemic cells. Blood 103:3837–3844

    Article  PubMed  CAS  Google Scholar 

  47. Meurette O, Fontaine A, Rebillard A et al (2006) Cytotoxicity of TRAIL/anticancer drug combinations in human normal cells. Ann N Y Acad Sci 1090:209–216

    Article  PubMed  CAS  Google Scholar 

  48. Koga Y, Matsuzaki A, Suminoe A et al (2004) Neutrophil derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Cancer Res 64:1037–1043

    Article  PubMed  CAS  Google Scholar 

  49. Cassatella MA, Huber V, Calzetti F et al (2006) Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intracellular pool that is readily mobilizable following exposure to proinflammatory mediators. J Leukoc Biol 769:123–132

    Google Scholar 

  50. Tanaka H, Ito T, Kyo T et al (2007) Treatment with IFNalpha in vivo up-regulates serum-soluble TNF-related apoptosis inducing ligand (sTRAIL) levels and TRAIL mRNA expressions in neutrophils in chronic myelogenous leukemia patients. Eur J Haematol 78:389–398

    Article  PubMed  CAS  Google Scholar 

  51. Kamohara H, Matsuyama W, Shimozato O et al (2004) Regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression in human neutrophils. Immunology 111:186–194

    Article  PubMed  CAS  Google Scholar 

  52. Lum JJ, Bren G, McClure R et al (2005) Elimination of senescent neutrophils by TNF-related apopotosis-inducing ligand. J Immunol 175:1232–1238

    PubMed  CAS  Google Scholar 

  53. Wendling U, Walczak H, Dörr J (2000) Expression of TRAIL receptors in human autoreactive and foreign antigenspecific T cells. Cell Death Differ 7:637–644

    Article  PubMed  CAS  Google Scholar 

  54. Finnberg N, Klein-Szanto AJ, El-Deiry WS et al (2008) TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis. J Clin Invest 118:111–123

    Article  PubMed  CAS  Google Scholar 

  55. Cretney E, Uldrich AP, Berzins SP et al (2003) Normal thymocyte negative selection in TRAIL-deficient mice. J Exp Med 198:491–496

    Article  PubMed  CAS  Google Scholar 

  56. Diehl GE, Yue HH, Hsieh K et al (2004) TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21:877–889

    Article  PubMed  CAS  Google Scholar 

  57. Zerafa N, Westwood JA, Cretney E et al (2005) Cutting edge: TRAIL deficiency accelerates hematological malignancies. J Immunol 175(9):5586–5590

    PubMed  CAS  Google Scholar 

  58. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA et al (2003) Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL−/− mice. Nat Immunol 4:255–260

    Article  PubMed  CAS  Google Scholar 

  59. Simon AK, Williams O, Mongkolsapaya J et al (2001) Tumor necrosis factor related apoptosis-inducing ligand in T cell development: sensitivity of human thymocytes. Proc Natl Acad Sci U S A 98:5158–5163

    Article  PubMed  CAS  Google Scholar 

  60. Clarke P, Meintzer SM, Gibson S et al (2000) Reovirus-induced apoptosis is mediated by TRAIL. J Virol 74:8135–8139

    Article  PubMed  CAS  Google Scholar 

  61. Lum JJ, Pilon AA, Sanchez-Dardon J et al (2001) Induction of cell death in human immunodeficiency virus-infected macrophages and resting memory CD4 T cells by TRAIL/Apo2l. J Virol 75:11128–11136

    Article  PubMed  CAS  Google Scholar 

  62. Takeda K, Smyth MJ, Cretney E et al (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161–169

    Article  PubMed  CAS  Google Scholar 

  63. Zheng SJ, Wang P, Tsabary G et al (2004) Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest 113:58–64

    PubMed  CAS  Google Scholar 

  64. Hoffmann A, Levchenko A, Scott ML et al (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298:1241–1245

    Article  PubMed  CAS  Google Scholar 

  65. Kaplan MJ, Ray D, Mo RR et al (2000) TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J Immunol 164:2897–2904

    PubMed  CAS  Google Scholar 

  66. Alladina SJ, Song JH, Davidge ST et al (2005) TRAIL-induced apoptosis in human vascular endothelium is regulated by phosphatidylinositol 3-kinase/Akt through the short form of cellular FLIP and Bcl-2. J Vasc Res 42:337–347

    Article  PubMed  CAS  Google Scholar 

  67. Viemann D, Goebeler M, Schmid S et al (2006) TNF induces distinct gene expression programs in microvascular and macrovascular human endothelial cells. J Leukoc Biol 80:174–185

    Article  PubMed  CAS  Google Scholar 

  68. Prat A, Biernacki K, Wosik K et al (2001) Glial cell influence on the human blood-brain barrier. Glia 36:145–155

    Article  PubMed  CAS  Google Scholar 

  69. Pritzker LB, Scatena M, Giachelli CM (2004) The role of osteoprotegerin and tumor necrosis factor-related apoptosis-inducing ligand in human microvascular endothelial cell survival. Mol Biol Cell 15:2834–2841

    Article  PubMed  CAS  Google Scholar 

  70. Secchiero P, Corallini F, di Iasio MG et al (2005) TRAIL counteracts the proadhesive activity of inflammatory cytokines in endothelial cells by down-modulating CCL8 and CXCL10 chemokine expression and release. Blood 105:3413–3419

    Article  PubMed  CAS  Google Scholar 

  71. Zauli G, Pandolfi A, Gonelli A et al (2003) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sequentially upregulates nitric oxide and prostanoid production in primary human endothelial cells. Circ Res 92:732–740

    Article  PubMed  CAS  Google Scholar 

  72. Bielawska-Pohl A, Crola C, Caignard A et al (2005) Human NK cells lyse organ-specific endothelial cells: analysis of adhesion and cytotoxic mechanisms. J Immunol 174:5573–5582

    PubMed  CAS  Google Scholar 

  73. Li JH, Kirkiles-Smith NC, McNiff JM et al (2003) TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells. J Immunol 171:1526–1533

    PubMed  CAS  Google Scholar 

  74. Reddy MA, Prasadarao NV, Wass CA et al (2000) Phosphatidylinositol 3-kinase activation and interaction with focal adhesion kinase in Escherichia coli K1 invasion of human brain microvascular endothelial cells. J Biol Chem 275:36769–36774

    Article  PubMed  CAS  Google Scholar 

  75. Dörr J, Bechmann I, Waiczies S et al (2002) Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain. J Neurosci 22:RC209

    PubMed  Google Scholar 

  76. Cannella B, Gaupp S, Omari KM et al (2007) Multiple sclerosis: death receptor expression and oligodendrocyte apoptosis in established lesions. J Neuroimmunol 188:128–137

    Article  PubMed  CAS  Google Scholar 

  77. Ryan LA, Peng H, Erichsen DA et al (2004) TNF-related apoptosis-inducing ligand mediates human neuronal apoptosis: links to HIV-1-associated dementia. J Neuroimmunology 148:127–139

    Article  CAS  Google Scholar 

  78. Bechmann I, Mor G, Nilsen J et al (1999) FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier. Glia 27:62–74

    Article  PubMed  CAS  Google Scholar 

  79. Flugel A, Schwaiger FW, Neumann H et al (2000) Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathol 10:353–364

    Article  PubMed  CAS  Google Scholar 

  80. Bechmann I, Steiner B, Gimsa U et al (2002) Astrocyte-induced T cell elimination is CD95 ligand dependent. J Neuroimmunol 132:60–65

    Article  PubMed  CAS  Google Scholar 

  81. Aktas O, Waiczies S, Smorodchenko A et al (2003) Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med 197:725–733

    Article  PubMed  CAS  Google Scholar 

  82. Uberti D, Cantarella G, Facchetti F et al (2004) TRAIL is expressed in the brain cells of Alzheimer's disease patients. NeuroReport 15:579–581

    Article  PubMed  CAS  Google Scholar 

  83. Frank S, Köhler U, Schackert G et al (1999) Expression of TRAIL and its receptors in human brain tumors. Biochem Biophys Res Commun 257:454–459

    Article  PubMed  CAS  Google Scholar 

  84. Genc S, Kizildag S, Genc K et al (2003) Interferon gamma and lipopolysaccharide upregulate TNF-related apoptosis-inducing ligand expression in murine microglia. Immunol Lett 85:271–274

    Article  PubMed  CAS  Google Scholar 

  85. Lee J, Shin JS, Park JY et al (2003) p38 mitogen-activated protein kinase modulates expression of tumor necrosis factor-related apoptosis-inducing ligand induced by interferon-gamma in fetal brain astrocytes. J Neurosci Res 74:884–890

    Article  PubMed  CAS  Google Scholar 

  86. Choi K, Song S, Choi C (2008) Requirement of caspases and p38 MAPK for TRAIL-mediated ICAM-1 expression by human astroglial cells. Immunol Lett 117:168–173

    Article  PubMed  CAS  Google Scholar 

  87. Wosik K, Biernacki K, Khouzam MP et al (2007) Death receptor expression and function at the human blood brain barrier. J Neurol Sci 259:53–60

    Article  PubMed  CAS  Google Scholar 

  88. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  PubMed  CAS  Google Scholar 

  89. Song K, Chen Y, Goke R et al (2000) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J Exp Med 191:1095–1104

    Article  PubMed  CAS  Google Scholar 

  90. Mi QS, Ly D, Lamhamedi-Cherradi SE et al (2003) Blockade of tumor necrosis factor-related apoptosis-inducing ligand exacerbates type 1 diabetes in NOD mice. Diabetes 52:1967–1975

    Article  PubMed  CAS  Google Scholar 

  91. Wang SH, Cao Z, Wolf JM et al (2005) Death ligand tumor necrosis factor-related apoptosis-inducing ligand inhibits experimental autoimmune thyroiditis. Endocrinology 146:4721–4726

    Article  PubMed  CAS  Google Scholar 

  92. Hilliard B, Wilmen A, Seidel C et al (2001) Roles of TNF-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis. J Immunol 166:1314–1319

    PubMed  CAS  Google Scholar 

  93. Lünemann JD, Waiczies S, Ehrlich S et al (2002) Death ligand TRAIL induces no apoptosis but inhibits activation of human (auto) antigen-specific T cells. J Immunol 168:4881–4888

    PubMed  Google Scholar 

  94. Ferguson B, Matyszak MK, Esiri MM et al (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  95. Diestel A, Aktas O, Hackel D et al (2003) Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J Exp Med 198:1729–1740

    Article  PubMed  CAS  Google Scholar 

  96. Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527

    Article  PubMed  CAS  Google Scholar 

  97. Matysiak M, Jurewicz A, Jaskolski D et al (2002) TRAIL induces death of human oligodendrocytes isolated from adult brain. Brain 125:2469–2480

    Article  PubMed  Google Scholar 

  98. Aktas O, Smorodchenko A, Brocke S et al (2005) Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 46:421–432

    Article  PubMed  CAS  Google Scholar 

  99. Bonetti B, Pohl J, Gao YL et al (1997) Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J Immunol 159:5733–5741

    PubMed  CAS  Google Scholar 

  100. Braun JS, Novak R, Herzog KH et al (1999) Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat Med 5:298–302

    Article  PubMed  CAS  Google Scholar 

  101. Braun JS, Sublett JE, Freyer D et al (2002) Pneumococcal pneumolysin and H(2) O(2) mediate brain cell apoptosis during meningitis. J Clin Invest 109:19–27

    PubMed  CAS  Google Scholar 

  102. Nau R, Soto A, Brück W (1999) Apoptosis of neurons in the dentate gyrus in humans suffering from bacterial meningitis. J Neuropathol Exp Neurol 58:265–274

    Article  PubMed  CAS  Google Scholar 

  103. Nau R, Brück W (2002) Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 25:38–45

    Article  PubMed  CAS  Google Scholar 

  104. Van der Flier M, Geelen SP, Kimpen JL et al (2003) Reprogramming the host response in bacterial meningitis: how best to improve outcome? Clin Microbiol Rev 16:415–429

    Article  PubMed  CAS  Google Scholar 

  105. Weber JR, Angstwurm K, Bürger W et al (1995) Anti ICAM-1 (CD 54) monoclonal antibody reduces inflammatory changes in experimental bacterial meningitis. J Neuroimmunol. 63:63–68

    Article  PubMed  CAS  Google Scholar 

  106. Hoffmann O, Priller J, Prozorovski T et al (2007) TRAIL limits excessive host immune responses in bacterial meningitis. J Clin Invest 117:2004–2013

    Article  PubMed  CAS  Google Scholar 

  107. Prestigiacomo CJ, Kim SC, Connolly ES Jr et al (1999) CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke 30:1110–1117

    PubMed  CAS  Google Scholar 

  108. Mabuchi T, Kitagawa K, Ohtsuki T et al (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31:1735–1743

    PubMed  CAS  Google Scholar 

  109. Lehnardt S, Lehmann S, Kaul D et al (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190:28–33

    Article  PubMed  CAS  Google Scholar 

  110. Martin-Villalba A, Herr I, Jeremias I et al (1999) CD95 ligand (Fas-L/APO-1 L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci 19:3809–3817

    PubMed  CAS  Google Scholar 

  111. Martin-Villalba A, Hahne M, Kleber S et al (2001) Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death Differ 8:679–686

    Article  PubMed  CAS  Google Scholar 

  112. Mahajan S, Dammai V, Hsu T et al (2008) Hypoxia-inducible factor-2{alpha} regulates the expression of TRAIL receptor DR5 in renal cancer cells. Carcinogenesis 29:1734–1741

    Article  PubMed  CAS  Google Scholar 

  113. Cantarella G, Uberti D, Carsana T et al (2003) Neutralization of TRAIL death pathway protects human neuronal cell line from beta-amyloid toxicity. Cell Death Differ 10:134–141

    Article  PubMed  CAS  Google Scholar 

  114. Gartner S (2000) HIV infection and dementia. Science 287:602–604

    Article  PubMed  CAS  Google Scholar 

  115. Kaul M, Zheng J, Okamoto S et al (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892

    Article  PubMed  CAS  Google Scholar 

  116. Budka H (1991) Neuropathology of human immunodeficiency virus infection. Brain Pathol 1:163–175

    Article  PubMed  CAS  Google Scholar 

  117. Glass JD, Fedor H, Wesselingh SL et al (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38:755–762

    Article  PubMed  CAS  Google Scholar 

  118. Zhang M, Li X, Pang X et al (2001) Identification of a potential HIV-induced source of bystander-mediated apoptosis in T cells: upregulation of trail in primary human macrophages by HIV-1 tat. J Biomed Sci 8:290–296

    Article  PubMed  CAS  Google Scholar 

  119. Miura Y, Misawa N, Kawano Y et al (2003) Tumor necrosis factor-related apoptosis-inducing ligand induces neuronal death in a murine model of HIV central nervous system infection. Proc Natl Acad Sci U S A 100:2777–2782

    Article  PubMed  CAS  Google Scholar 

  120. Huang Y, Erdmann N, Peng H et al (2006) TRAIL-mediated apoptosis in HIV-1-infected macrophages is dependent on the inhibition of Akt-1 phosphorylation. J Immunol 177:2304–2013

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of Wilhelm Sander Stiftung to O.H. and by grants of Deutsche Forschungsgemeinschaft (DFG) to F.Z. and J.R.W.

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg R. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, O., Zipp, F. & Weber, J.R. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) in central nervous system inflammation. J Mol Med 87, 753–763 (2009). https://doi.org/10.1007/s00109-009-0484-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0484-x

Keywords

Navigation