Skip to main content

Advertisement

Log in

Neuropathology underlying clinical variability in patients with synucleinopathies

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Abnormal aggregates of the synaptic protein, α-synuclein, are the dominant pathology in syndromes known as the synucleinopathies. The cellular aggregation of the protein occurs in three distinct types of inclusions in three main clinical syndromes. α-Synuclein deposits in neuronal Lewy bodies and Lewy neurites in idiopathic Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), as well as incidentally in a number of other conditions. In contrast, α-synuclein deposits largely in oligodendroglial cytoplasmic inclusions in multiple system atrophy (MSA). Lastly, α-synuclein also deposits in large axonal spheroids in a number of rarer neuroaxonal dystrophies. Disorders are usually defined by their most dominant pathology, but for the synucleinopathies, clinical heterogeneity within the main syndromes is well documented. MSA was originally viewed as three different clinical phenotypes due to different anatomical localization of the lesions. In PD, recent meta-analyses have identified four main clinical phenotypes, and clinicopathological correlations suggest that more severe and more rapid progression of pathology with chronological age, as well as the involvement of additional neuropathologies, differentiates these phenotypes. In DLB, recent large studies show that clinical diagnosis is too insensitive to identify the syndrome itself, although clinicopathological studies suggest variable clinical features occur in the different pathological forms of this syndrome (pure DLB, DLB with Alzheimer’s disease (AD), and AD with amygdala predominant Lewy pathology). The recognition of considerable heterogeneity within the synucleinopathy syndromes is important for the identification of factors involved in changing their pathological phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aarsland D, Ballard CG, Halliday G (2004) Are Parkinson’s disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol 17:137–145

    PubMed  Google Scholar 

  2. Abbott RD, Ross GW, Petrovitch H et al (2007) Bowel movement frequency in late-life and incidental Lewy bodies. Mov Disord 22:1581–1586

    PubMed  Google Scholar 

  3. Adams R, Van Bogaert L, Van Der Eecken H (1961) [Nigro-striate and cerebello-nigro-striate degeneration. (Clinical uniqueness and pathological variability of presenile degeneration of the extrapyramidal rigidity type.)]. Psychiatr Neurol (Basel) 142:219–259

    CAS  Google Scholar 

  4. Al-Chalabi A, Durr A, Wood NW et al (2009) Genetic variants of the alpha-synuclein gene SNCA are associated with multiple system atrophy. PLoS One 4:e7114

    PubMed  Google Scholar 

  5. Alafuzoff I, Ince PG, Arzberger T et al (2009) Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 117:635–652

    PubMed  CAS  Google Scholar 

  6. Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW (2002) Parkinson disease neuropathology: later-developing dementia and loss of the levodopa response. Arch Neurol 59:102–112

    PubMed  Google Scholar 

  7. Arima K, Murayama S, Mukoyama M, Inose T (1992) Immunocytochemical and ultrastructural studies of neuronal and oligodendroglial cytoplasmic inclusions in multiple system atrophy. 1. Neuronal cytoplasmic inclusions. Acta Neuropathol 83:453–460

    PubMed  CAS  Google Scholar 

  8. Arima K, Ueda K, Sunohara N et al (1998) NACP/alpha-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol 96:439–444

    PubMed  CAS  Google Scholar 

  9. Bannister R, Oppenheimer DR (1972) Degenerative diseases of the nervous system associated with autonomic failure. Brain 95:457–474

    PubMed  CAS  Google Scholar 

  10. Beach TG, Adler CH, Lue L et al (2009) Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 117:613–634

    PubMed  Google Scholar 

  11. Beach TG, Adler CH, Sue LI et al (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702

    PubMed  CAS  Google Scholar 

  12. Benarroch EE, Schmeichel AM, Low PA, Parisi JE (2004) Involvement of medullary serotonergic groups in multiple system atrophy. Ann Neurol 55:418–422

    PubMed  Google Scholar 

  13. Benarroch EE, Schmeichel AM, Sandroni P, Low PA, Parisi JE (2006) Involvement of vagal autonomic nuclei in multiple system atrophy and Lewy body disease. Neurology 66:378–383

    PubMed  CAS  Google Scholar 

  14. Benarroch EE, Smithson IL, Low PA, Parisi JE (1998) Depletion of catecholaminergic neurons of the rostral ventrolateral medulla in multiple systems atrophy with autonomic failure. Ann Neurol 43:156–163

    PubMed  CAS  Google Scholar 

  15. Bloch A, Probst A, Bissig H, Adams H, Tolnay M (2006) Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol 32:284–295

    PubMed  CAS  Google Scholar 

  16. Boeve BF, Dickson DW, Olson EJ et al (2007) Insights into REM sleep behavior disorder pathophysiology in brainstem-predominant Lewy body disease. Sleep Med 8:60–64

    PubMed  CAS  Google Scholar 

  17. Braak H, Del Tredici K (2008) Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 70:1916–1925

    PubMed  Google Scholar 

  18. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  19. Brown RG, Lacomblez L, Landwehrmeyer BG et al (2010) Cognitive impairment in patients with multiple system atrophy and progressive supranuclear palsy. Brain 133:2382–2393

    PubMed  Google Scholar 

  20. Brundin P, Li JY, Holton JL, Lindvall O, Revesz T (2008) Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci 9:741–745

    PubMed  CAS  Google Scholar 

  21. Buee L, Delacourte A (1999) Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9:681–693

    PubMed  CAS  Google Scholar 

  22. Buee-Scherrer V, Buee L, Hof PR et al (1995) Neurofibrillary degeneration in amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam. Immunochemical characterization of tau proteins. Am J Pathol 146:924–932

    PubMed  CAS  Google Scholar 

  23. Bugiani O, Giaccone G, Piccardo P et al (2000) Neuropathology of Gerstmann–Straussler–Scheinker disease. Microsc Res Tech 50:10–15

    PubMed  CAS  Google Scholar 

  24. Burke RE (2010) Evaluation of the Braak staging scheme for Parkinson’s disease: introduction to a panel presentation. Mov Disord 25(Suppl 1):S76–S77

    PubMed  Google Scholar 

  25. Burke RE, Dauer WT, Vonsattel JP (2008) A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 64:485–491

    PubMed  Google Scholar 

  26. Campbell BC, McLean CA, Culvenor JG et al (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76:87–96

    PubMed  CAS  Google Scholar 

  27. Chang CC, Chang YY, Chang WN et al (2009) Cognitive deficits in multiple system atrophy correlate with frontal atrophy and disease duration. Eur J Neurol 16:1144–1150

    PubMed  CAS  Google Scholar 

  28. Clark LN, Kartsaklis LA, Wolf Gilbert R et al (2009) Association of glucocerebrosidase mutations with dementia with Lewy bodies. Arch Neurol 66:578–583

    PubMed  Google Scholar 

  29. Compta Y, Parkkinen L, O’Sullivan SS et al (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134:1493–1505

    Google Scholar 

  30. Cullen V, Sardi SP, Ng J et al (2011) Acid beta-glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter alpha-synuclein processing. Ann Neurol 69:940–953

    Google Scholar 

  31. Danzer KM, Ruf WP, Putcha P et al (2011) Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336

    PubMed  CAS  Google Scholar 

  32. Dejerine J, Thomas AA (1900) L’atrophie olivo-ponto-c‚r‚belleuse. Nouv Iconogr Salpˆtr 13:330–370

    Google Scholar 

  33. Deramecourt V, Bombois S, Maurage CA et al (2006) Biochemical staging of synucleinopathy and amyloid deposition in dementia with Lewy bodies. J Neuropathol Exp Neurol 65:278–288

    PubMed  CAS  Google Scholar 

  34. Desplats P, Lee HJ, Bae EJ et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015

    PubMed  CAS  Google Scholar 

  35. Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157

    PubMed  CAS  Google Scholar 

  36. Dickson DW, Crystal H, Mattiace LA et al (1989) Diffuse Lewy body disease: light and electron microscopic immunocytochemistry of senile plaques. Acta Neuropathol 78:572–584

    PubMed  CAS  Google Scholar 

  37. Dickson DW, Fujishiro H, DelleDonne A et al (2008) Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol 115:437–444

    PubMed  Google Scholar 

  38. Dickson DW, Liu W, Hardy J et al (1999) Widespread alterations of alpha-synuclein in multiple system atrophy. Am J Pathol 155:1241–1251

    PubMed  CAS  Google Scholar 

  39. Dickson DW, Ruan D, Crystal H et al (1991) Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 41:1402–1409

    PubMed  CAS  Google Scholar 

  40. Dickson DW, Uchikado H, Fujishiro H, Tsuboi Y (2010) Evidence in favor of Braak staging of Parkinson’s disease. Mov Disord 25:S78–S82

    PubMed  Google Scholar 

  41. Doherty MJ, Bird TD, Leverenz JB (2004) Alpha-synuclein in motor neuron disease: an immunohistologic study. Acta Neuropathol 107:169–175

    PubMed  CAS  Google Scholar 

  42. Duda JE, Giasson BI, Chen Q et al (2000) Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 157:1439–1445

    PubMed  CAS  Google Scholar 

  43. Emre M, Aarsland D, Brown R et al (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707 (quiz 837)

    Google Scholar 

  44. Fearnley JM, Lees AJ (1990) Striatonigral degeneration. A clinicopathological study. Brain 113(Pt 6):1823–1842

    PubMed  Google Scholar 

  45. Forman MS, Schmidt ML, Kasturi S et al (2002) Tau and alpha-synuclein pathology in amygdala of Parkinsonism–dementia complex patients of Guam. Am J Pathol 160:1725–1731

    PubMed  CAS  Google Scholar 

  46. Forno LS (1969) Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc 17:557–575

    PubMed  CAS  Google Scholar 

  47. Fotuhi M, Hachinski V, Whitehouse PJ (2009) Changing perspectives regarding late-life dementia. Nat Rev Neurol 5:649–658

    PubMed  Google Scholar 

  48. Frigerio R, Fujishiro H, Ahn TB et al (2011) Incidental Lewy body disease: do some cases represent a preclinical stage of dementia with Lewy bodies? Neurobiol Aging 32:857–863

    Google Scholar 

  49. Frigerio R, Fujishiro H, Maraganore DM et al (2009) Comparison of risk factor profiles in incidental Lewy body disease and Parkinson disease. Arch Neurol 66:1114–1119

    PubMed  Google Scholar 

  50. Fujishiro H, Ahn T-B, Frigerio R et al (2008) Incidental Lewy bodies in various neurodegenerative disorders. Mov Disord 23(Suppl 1):S30

    Google Scholar 

  51. Fujishiro H, Ferman TJ, Boeve BF et al (2008) Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases. J Neuropathol Exp Neurol 67:649–656

    PubMed  Google Scholar 

  52. Fujishiro H, Iseki E, Higashi S et al (2010) Distribution of cerebral amyloid deposition and its relevance to clinical phenotype in Lewy body dementia. Neurosci Lett 486:19–23

    PubMed  CAS  Google Scholar 

  53. Fujishiro H, Tsuboi Y, Lin WL, Uchikado H, Dickson DW (2008) Co-localization of tau and alpha-synuclein in the olfactory bulb in Alzheimer’s disease with amygdala Lewy bodies. Acta Neuropathol 116:17–24

    PubMed  CAS  Google Scholar 

  54. Fujiwara H, Hasegawa M, Dohmae N et al (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    PubMed  CAS  Google Scholar 

  55. Gai WP, Power JH, Blumbergs PC, Blessing WW (1998) Multiple-system atrophy: a new alpha-synuclein disease? Lancet 352:547–548

    PubMed  CAS  Google Scholar 

  56. Galvin JE, Giasson B, Hurtig HI, Lee VM, Trojanowski JQ (2000) Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am J Pathol 157:361–368

    PubMed  CAS  Google Scholar 

  57. Gasser T, Hardy J, Mizuno Y (2011) Milestones in PD genetics. Mov Disord 26:1042–1048

    PubMed  Google Scholar 

  58. Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson’s disease. Arch Neurol 56:33–39

    PubMed  CAS  Google Scholar 

  59. Geser F, Wenning GK, Seppi K et al (2006) Progression of multiple system atrophy (MSA): a prospective natural history study by the European MSA Study Group (EMSA SG). Mov Disord 21:179–186

    PubMed  Google Scholar 

  60. Ghetti B, Dlouhy SR, Giaccone G et al (1995) Gerstmann–Straussler–Scheinker disease and the Indiana kindred. Brain Pathol 5:61–75

    PubMed  CAS  Google Scholar 

  61. Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752

    PubMed  CAS  Google Scholar 

  62. Gilman S, Wenning GK, Low PA et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676

    PubMed  CAS  Google Scholar 

  63. Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry 32:28–34

    PubMed  CAS  Google Scholar 

  64. Greggio E, Bisaglia M, Civiero L, Bubacco L (2011) Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of Parkinson’s disease? Mol Neurodegener 6:6

    PubMed  CAS  Google Scholar 

  65. Halliday G, Hely M, Reid W, Morris J (2008) The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 115:409–415

    PubMed  Google Scholar 

  66. Halliday GM, McCann H (2010) The progression of pathology in Parkinson’s disease. Ann N Y Acad Sci 1184:188–195

    PubMed  Google Scholar 

  67. Halliday GM, Song YJ, Harding AJ (2011) Striatal beta-amyloid in dementia with Lewy bodies but not Parkinson’s disease. J Neural Transm 118:713–719

    PubMed  CAS  Google Scholar 

  68. Hamilton RL (2000) Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol 10:378–384

    PubMed  CAS  Google Scholar 

  69. Hara K, Momose Y, Tokiguchi S et al (2007) Multiplex families with multiple system atrophy. Arch Neurol 64:545–551

    PubMed  Google Scholar 

  70. Harding AJ, Halliday GM (2001) Cortical Lewy body pathology in the diagnosis of dementia. Acta Neuropathol (Berl) 102:355–363

    CAS  Google Scholar 

  71. Hawkes CH, Del Tredici K, Braak H (2009) Parkinson’s disease: the dual hit theory revisited. Ann N Y Acad Sci 1170:615–622

    PubMed  Google Scholar 

  72. Hely MA, Morris JG, Reid WG, Trafficante R (2005) Sydney Multicenter Study of Parkinson’s disease: non-l-dopa-responsive problems dominate at 15 years. Mov Disord 20:190–199

    PubMed  Google Scholar 

  73. Hishikawa N, Hashizume Y, Ujihira N et al (2003) Alpha-synuclein-positive structures in association with diffuse neurofibrillary tangles with calcification. Neuropathol Appl Neurobiol 29:280–287

    PubMed  CAS  Google Scholar 

  74. Huang Y, Garrick R, Cook R et al (2005) Pallidal stimulation reduces treatment-induced dyskinesias in “minimal-change” multiple system atrophy. Mov Disord 20:1042–1047

    PubMed  Google Scholar 

  75. Inoue M, Yagishita S, Ryo M et al (1997) The distribution and dynamic density of oligodendroglial cytoplasmic inclusions (GCIs) in multiple system atrophy: a correlation between the density of GCIs and the degree of involvement of striatonigral and olivopontocerebellar systems. Acta Neuropathol 93:585–591

    PubMed  CAS  Google Scholar 

  76. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    PubMed  CAS  Google Scholar 

  77. Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18:2–12

    Google Scholar 

  78. Jellinger KA (2009) A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta 1792:730–740

    PubMed  CAS  Google Scholar 

  79. Jellinger KA, Attems J (2011) Prevalence and pathology of dementia with Lewy bodies in the oldest old: a comparison with other dementing disorders. Dement Geriatr Cogn Disord 31:309–316

    PubMed  CAS  Google Scholar 

  80. Jensen PH, Li JY, Dahlstrom A, Dotti CG (1999) Axonal transport of synucleins is mediated by all rate components. Eur J Neurosci 11:3369–3376

    PubMed  CAS  Google Scholar 

  81. Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: a critical analysis of alpha-synuclein staging. Neuropathol Appl Neurobiol 34:284–295

    PubMed  CAS  Google Scholar 

  82. Kato S, Nakamura H (1990) Cytoplasmic argyrophilic inclusions in neurons of pontine nuclei in patients with olivopontocerebellar atrophy: immunohistochemical and ultrastructural studies. Acta Neuropathol 79:584–594

    PubMed  CAS  Google Scholar 

  83. Kawai Y, Suenaga M, Takeda A et al (2008) Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology 70:1390–1396

    PubMed  CAS  Google Scholar 

  84. Kelley BJ, Haidar W, Boeve BF et al (2009) Prominent phenotypic variability associated with mutations in progranulin. Neurobiol Aging 30:739–751

    PubMed  CAS  Google Scholar 

  85. Kingsbury AE, Bandopadhyay R, Silveira-Moriyama L et al (2010) Brain stem pathology in Parkinson’s disease: an evaluation of the Braak staging model. Mov Disord 25:2508–2515

    Google Scholar 

  86. Koller WC, Glatt SL, Hubble JP et al (1995) Apolipoprotein E genotypes in Parkinson’s disease with and without dementia. Ann Neurol 37:242–245

    PubMed  CAS  Google Scholar 

  87. Konno H, Yamamoto T, Iwasaki Y, Iizuka H (1986) Shy-Drager syndrome and amyotrophic lateral sclerosis. Cytoarchitectonic and morphometric studies of sacral autonomic neurons. J Neurol Sci 73:193–204

    PubMed  CAS  Google Scholar 

  88. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506

    PubMed  CAS  Google Scholar 

  89. Kosaka K (1994) Diffuse neurofibrillary tangles with calcification: a new presenile dementia. J Neurol Neurosurg Psychiatry 57:594–596

    PubMed  CAS  Google Scholar 

  90. Kosaka K, Tsuchiya K, Yoshimura M (1988) Lewy body disease with and without dementia: a clinicopathological study of 35 cases. Clin Neuropathol 7:299–305

    PubMed  CAS  Google Scholar 

  91. Kraybill ML, Larson EB, Tsuang DW et al (2005) Cognitive differences in dementia patients with autopsy-verified AD, Lewy body pathology, or both. Neurology 64:2069–2073

    PubMed  CAS  Google Scholar 

  92. Krefft TA, Graff-Radford NR, Dickson DW, Baker M, Castellani RJ (2003) Familial primary progressive aphasia. Alzheimer Dis Assoc Disord 17:106–112

    PubMed  Google Scholar 

  93. Lashley T, Holton JL, Gray E et al (2008) Cortical alpha-synuclein load is associated with amyloid-beta plaque burden in a subset of Parkinson’s disease patients. Acta Neuropathol 115:417–425

    PubMed  CAS  Google Scholar 

  94. Lee HJ, Suk JE, Patrick C et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272

    PubMed  CAS  Google Scholar 

  95. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    PubMed  CAS  Google Scholar 

  96. Leverenz JB, Hamilton R, Tsuang DW et al (2008) Empiric refinement of the pathologic assessment of Lewy-related pathology in the dementia patient. Brain Pathol 18:220–224

    PubMed  Google Scholar 

  97. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    PubMed  CAS  Google Scholar 

  98. Li JY, Englund E, Widner H et al (2010) Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov Disord 25:1091–1096

    PubMed  Google Scholar 

  99. Li W, Hoffman PN, Stirling W, Price DL, Lee MK (2004) Axonal transport of human alpha-synuclein slows with aging but is not affected by familial Parkinson’s disease-linked mutations. J Neurochem 88:401–410

    PubMed  CAS  Google Scholar 

  100. Lin WL, DeLucia MW, Dickson DW (2004) Alpha-synuclein immunoreactivity in neuronal nuclear inclusions and neurites in multiple system atrophy. Neurosci Lett 354:99–102

    PubMed  CAS  Google Scholar 

  101. Lopez OL, Becker JT, Sweet RA, Martin-Sanchez FJ, Hamilton RL (2006) Lewy bodies in the amygdala increase risk for major depression in subjects with Alzheimer disease. Neurology 67:660–665

    PubMed  CAS  Google Scholar 

  102. Lopez OL, Hamilton RL, Becker JT et al (2000) Severity of cognitive impairment and the clinical diagnosis of AD with Lewy bodies. Neurology 54:1780–1787

    PubMed  CAS  Google Scholar 

  103. Louis ED (2010) Essential tremor: evolving clinicopathological concepts in an era of intensive post-mortem enquiry. Lancet Neurol 9:613–622

    PubMed  Google Scholar 

  104. Louis ED, Faust PL, Vonsattel JP et al (2007) Neuropathological changes in essential tremor: 33 cases compared with 21 controls. Brain 130:3297–3307

    PubMed  Google Scholar 

  105. Markesbery WR, Jicha GA, Liu H, Schmitt FA (2009) Lewy body pathology in normal elderly subjects. J Neuropathol Exp Neurol 68:816–822

    PubMed  Google Scholar 

  106. Matthews FE, Brayne C, Lowe J et al (2009) Epidemiological pathology of dementia: attributable-risks at death in the Medical Research Council Cognitive Function and Ageing Study. PLoS Med 6:e1000180

    PubMed  Google Scholar 

  107. McKee AC, Cantu RC, Nowinski CJ et al (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735

    PubMed  Google Scholar 

  108. McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872

    PubMed  CAS  Google Scholar 

  109. Mezey E, Dehejia A, Harta G et al (1998) Alpha synuclein in neurodegenerative disorders: murderer or accomplice? Nat Med 4:755–757

    PubMed  CAS  Google Scholar 

  110. Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  111. Mori F, Piao YS, Hayashi S et al (2003) Alpha-synuclein accumulates in Purkinje cells in Lewy body disease but not in multiple system atrophy. J Neuropathol Exp Neurol 62:812–819

    PubMed  CAS  Google Scholar 

  112. Morris JC, Cole M, Banker BQ, Wright D (1984) Hereditary dysphasic dementia and the Pick–Alzheimer spectrum. Ann Neurol 16:455–466

    PubMed  CAS  Google Scholar 

  113. Nakamura S, Ohnishi K, Nishimura M et al (1996) Large neurons in the tuberomammillary nucleus in patients with Parkinson’s disease and multiple system atrophy. Neurology 46:1693–1696

    PubMed  CAS  Google Scholar 

  114. Nalls MA, Plagnol V, Hernandez DG et al (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377:641–649

    PubMed  Google Scholar 

  115. Nelson PT, Jicha GA, Kryscio RJ et al (2010) Low sensitivity in clinical diagnoses of dementia with Lewy bodies. J Neurol 257:359–366

    PubMed  Google Scholar 

  116. Nelson PT, Kryscio RJ, Jicha GA et al (2009) Relative preservation of MMSE scores in autopsy-proven dementia with Lewy bodies. Neurology 73:1127–1133

    PubMed  CAS  Google Scholar 

  117. Nelson PT, Schmitt FA, Jicha GA et al (2010) Association between male gender and cortical Lewy body pathology in large autopsy series. J Neurol 257:1875–1881

    PubMed  Google Scholar 

  118. Neumann J, Bras J, Deas E et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794

    PubMed  Google Scholar 

  119. Neumann M, Adler S, Schluter O et al (2000) Alpha-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden–Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol 100:568–574

    PubMed  CAS  Google Scholar 

  120. Newell KL, Boyer P, Gomez-Tortosa E et al (1999) Alpha-synuclein immunoreactivity is present in axonal swellings in neuroaxonal dystrophy and acute traumatic brain injury. J Neuropathol Exp Neurol 58:1263–1268

    PubMed  CAS  Google Scholar 

  121. Nishie M, Mori F, Yoshimoto M, Takahashi H, Wakabayashi K (2004) A quantitative investigation of neuronal cytoplasmic and intranuclear inclusions in the pontine and inferior olivary nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 30:546–554

    PubMed  CAS  Google Scholar 

  122. Nishioka K, Ross OA, Vilarino-Guell C et al (2011) Glucocerebrosidase mutations in diffuse Lewy body disease. Parkinsonism Relat Disord 17:55–57

    PubMed  Google Scholar 

  123. O’Sullivan SS, Massey LA, Williams DR et al (2008) Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 131:1362–1372

    PubMed  Google Scholar 

  124. Oinas M, Sulkava R, Polvikoski T, Kalimo H, Paetau A (2007) Reappraisal of a consecutive autopsy series of patients with primary degenerative dementia: Lewy-related pathology. APMIS 115:820–827

    PubMed  CAS  Google Scholar 

  125. Olsson JE, Brunk U, Lindvall B, Eeg-Olofsson O (1992) Dopa-responsive dystonia with depigmentation of the substantia nigra and formation of Lewy bodies. J Neurol Sci 112:90–95

    PubMed  CAS  Google Scholar 

  126. Orimo S, Takahashi A, Uchihara T et al (2007) Degeneration of cardiac sympathetic nerve begins in the early disease process of Parkinson’s disease. Brain Pathol 17:24–30

    PubMed  CAS  Google Scholar 

  127. Ozawa T (2007) Morphological substrate of autonomic failure and neurohormonal dysfunction in multiple system atrophy: impact on determining phenotype spectrum. Acta Neuropathol 114:201–211

    PubMed  Google Scholar 

  128. Ozawa T, Healy DG, Abou-Sleiman PM et al (2006) The alpha-synuclein gene in multiple system atrophy. J Neurol Neurosurg Psychiatry 77:464–467

    PubMed  CAS  Google Scholar 

  129. Ozawa T, Paviour D, Quinn NP et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 127:2657–2671

    PubMed  Google Scholar 

  130. Ozawa T, Tada M, Kakita A et al (2010) The phenotype spectrum of Japanese multiple system atrophy. J Neurol Neurosurg Psychiatry 81:1253–1255

    PubMed  CAS  Google Scholar 

  131. Paisan-Ruiz C, Li A, Schneider SA et al (2010) Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.05.009

  132. Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy–Drager syndrome). J Neurol Sci 94:79–100

    PubMed  CAS  Google Scholar 

  133. Papp MI, Lantos PL (1992) Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy. J Neurol Sci 107:172–182

    PubMed  CAS  Google Scholar 

  134. Papp MI, Lantos PL (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain 117(Pt 2):235–243

    PubMed  Google Scholar 

  135. Parkkinen L, Pirttila T, Alafuzoff I (2008) Applicability of current staging/categorization of alpha-synuclein pathology and their clinical relevance. Acta Neuropathol 115:399–407

    PubMed  Google Scholar 

  136. Perl DP (2010) Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77:32–42

    PubMed  Google Scholar 

  137. Piguet O, Halliday GM, Creasey H, Broe GA, Kril JJ (2009) Frontotemporal dementia and dementia with Lewy bodies in a case–control study of Alzheimer’s disease. Int Psychogeriatr 21:688–695

    PubMed  Google Scholar 

  138. Popescu A, Lippa CF, Lee VM, Trojanowski JQ (2004) Lewy bodies in the amygdala: increase of alpha-synuclein aggregates in neurodegenerative diseases with tau-based inclusions. Arch Neurol 61:1915–1919

    PubMed  Google Scholar 

  139. Ross GW, Abbott RD, Petrovitch H et al (2006) Association of olfactory dysfunction with incidental Lewy bodies. Mov Disord 21:2062–2067

    PubMed  Google Scholar 

  140. Ross OA, Vilarino-Guell C, Wszolek ZK, Farrer MJ, Dickson DW (2010) Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Ann Neurol 67:414–415

    PubMed  Google Scholar 

  141. Saito Y, Ruberu NN, Sawabe M et al (2004) Lewy body-related alpha-synucleinopathy in aging. J Neuropathol Exp Neurol 63:742–749

    PubMed  Google Scholar 

  142. Saito Y, Suzuki K, Hulette CM, Murayama S (2004) Aberrant phosphorylation of alpha-synuclein in human Niemann–Pick type C1 disease. J Neuropathol Exp Neurol 63:323–328

    PubMed  CAS  Google Scholar 

  143. Schmidt ML, Zhukareva V, Newell KL, Lee VM, Trojanowski JQ (2001) Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol 101:518–524

    PubMed  CAS  Google Scholar 

  144. Scholz SW, Houlden H, Schulte C et al (2009) SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 65:610–614

    PubMed  CAS  Google Scholar 

  145. Schrag A, Ben-Shlomo Y, Quinn NP (1999) Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354:1771–1775

    PubMed  CAS  Google Scholar 

  146. Schrag A, Wenning GK, Quinn N, Ben-Shlomo Y (2008) Survival in multiple system atrophy. Mov Disord 23:294–296

    PubMed  Google Scholar 

  147. Sebeo J, Hof PR, Perl DP (2004) Occurrence of alpha-synuclein pathology in the cerebellum of Guamanian patients with parkinsonism–dementia complex. Acta Neuropathol 107:497–503

    PubMed  CAS  Google Scholar 

  148. Selikhova M, Williams DR, Kempster PA et al (2009) A clinico-pathological study of subtypes in Parkinson’s disease. Brain 132:2947–2957

    PubMed  CAS  Google Scholar 

  149. Shy GM, Drager GA (1960) A neurological syndrome associated with orthostatic hypotension: a clinical-pathologic study. Arch Neurol 2:511–527

    PubMed  CAS  Google Scholar 

  150. Siddiqua A, Margittai M (2010) Three- and four-repeat Tau coassemble into heterogeneous filaments: an implication for Alzheimer disease. J Biol Chem 285:37920–37926

    PubMed  CAS  Google Scholar 

  151. Sidransky E, Nalls MA, Aasly JO et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661

    PubMed  CAS  Google Scholar 

  152. Sobue G, Hashizume Y, Mitsuma T, Takahashi A (1987) Size-dependent myelinated fiber loss in the corticospinal tract in Shy–Drager syndrome and amyotrophic lateral sclerosis. Neurology 37:529–532

    PubMed  CAS  Google Scholar 

  153. Soma H, Yabe I, Takei A et al (2006) Heredity in multiple system atrophy. J Neurol Sci 240:107–110

    PubMed  CAS  Google Scholar 

  154. Spillantini MG, Crowther RA, Jakes R et al (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    PubMed  CAS  Google Scholar 

  155. Spillantini MG, Goedert M (2000) The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann N Y Acad Sci 920:16–27

    PubMed  CAS  Google Scholar 

  156. Spillantini MG, Schmidt ML, Lee VM-Y et al (1997) α-Synuclein in Lewy bodies. Nature 388:839–840

    PubMed  CAS  Google Scholar 

  157. Sung JH, Mastri AR, Segal E (1979) Pathology of Shy–Drager syndrome. J Neuropathol Exp Neurol 38:353–368

    PubMed  CAS  Google Scholar 

  158. Suzuki K, Parker CC, Pentchev PG et al (1995) Neurofibrillary tangles in Niemann–Pick disease type C. Acta Neuropathol 89:227–238

    PubMed  CAS  Google Scholar 

  159. Tofaris GK, Revesz T, Jacques TS, Papacostas S, Chataway J (2007) Adult-onset neurodegeneration with brain iron accumulation and cortical alpha-synuclein and tau pathology: a distinct clinicopathological entity. Arch Neurol 64:280–282

    PubMed  Google Scholar 

  160. Trivedi JR, Wolfe GI, Nations SP et al (2003) Adult polyglucosan body disease associated with Lewy bodies and tremor. Arch Neurol 60:764–766

    PubMed  Google Scholar 

  161. Trojanowski JQ, Revesz T (2007) Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropathol Appl Neurobiol 33:615–620

    PubMed  CAS  Google Scholar 

  162. Tsuang DW, Wilson RK, Lopez OL et al (2005) Genetic association between the APOE*4 allele and Lewy bodies in Alzheimer disease. Neurology 64:509–513

    PubMed  CAS  Google Scholar 

  163. Tsuboi Y, Uchikado H, Dickson DW (2007) Neuropathology of Parkinson’s disease dementia and dementia with Lewy bodies with reference to striatal pathology. Parkinsonism Relat Disord 13(Suppl 3):S221–S224

    PubMed  Google Scholar 

  164. Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510

    PubMed  CAS  Google Scholar 

  165. Tsuchiya K, Ozawa E, Haga C et al (2000) Constant involvement of the Betz cells and pyramidal tract in multiple system atrophy: a clinicopathological study of seven autopsy cases. Acta Neuropathol (Berl) 99:628–636

    CAS  Google Scholar 

  166. Uchikado H, DelleDonne A, Ahmed Z, Dickson DW (2006) Lewy bodies in progressive supranuclear palsy represent an independent disease process. J Neuropathol Exp Neurol 65:387–395

    PubMed  CAS  Google Scholar 

  167. Uchikado H, Lin WL, DeLucia MW, Dickson DW (2006) Alzheimer disease with amygdala Lewy bodies: a distinct form of alpha-synucleinopathy. J Neuropathol Exp Neurol 65:685–697

    PubMed  CAS  Google Scholar 

  168. Uchiyama M, Isse K, Tanaka K et al (1995) Incidental Lewy body disease in a patient with REM sleep behavior disorder. Neurology 45:709–712

    PubMed  CAS  Google Scholar 

  169. Utton MA, Noble WJ, Hill JE, Anderton BH, Hanger DP (2005) Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J Cell Sci 118:4645–4654

    PubMed  CAS  Google Scholar 

  170. van Rooden SM, Heiser WJ, Kok JN et al (2010) The identification of Parkinson’s disease subtypes using cluster analysis: a systematic review. Mov Disord 25:969–978

    PubMed  Google Scholar 

  171. Vefring H, Haugarvoll K, Tysnes OB, Larsen JP, Kurz MW (2010) The role of APOE alleles in incident Parkinson’s disease. The Norwegian ParkWest Study. Acta Neurol Scand 122:438–441

    PubMed  CAS  Google Scholar 

  172. Wakabayashi K, Fukushima T, Koide R et al (2000) Juvenile-onset generalized neuroaxonal dystrophy (Hallervorden–Spatz disease) with diffuse neurofibrillary and Lewy body pathology. Acta Neuropathol 99:331–336

    PubMed  CAS  Google Scholar 

  173. Wakabayashi K, Ikeuchi T, Ishikawa A, Takahashi H (1998) Multiple system atrophy with severe involvement of the motor cortical areas and cerebral white matter. J Neurol Sci 156:114–117

    PubMed  CAS  Google Scholar 

  174. Wakabayashi K, Mori F, Nishie M et al (2005) An autopsy case of early (“minimal change”) olivopontocerebellar atrophy (multiple system atrophy-cerebellar). Acta Neuropathol 110:185–190

    PubMed  Google Scholar 

  175. Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett 249:180–182

    PubMed  CAS  Google Scholar 

  176. Watanabe H, Saito Y, Terao S et al (2002) Progression and prognosis in multiple system atrophy: an analysis of 230 Japanese patients. Brain 125:1070–1083

    PubMed  Google Scholar 

  177. Weisman D, Cho M, Taylor C et al (2007) In dementia with Lewy bodies, Braak stage determines phenotype, not Lewy body distribution. Neurology 69:356–359

    PubMed  CAS  Google Scholar 

  178. Wenning GK, Brown R (2009) Dementia in multiple system atrophy: does it exist? Eur J Neurol 16:551–552

    PubMed  CAS  Google Scholar 

  179. Wenning GK, Quinn N, Magalhaes M, Mathias C, Daniel SE (1994) “Minimal change” multiple system atrophy. Mov Disord 9:161–166

    PubMed  CAS  Google Scholar 

  180. Wenning GK, Stefanova N (2009) Recent developments in multiple system atrophy. J Neurol 256:1791–1808

    PubMed  Google Scholar 

  181. Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP (1997) Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 12:133–147

    PubMed  CAS  Google Scholar 

  182. Wider C, Van Gerpen JA, DeArmond S et al (2009) Leukoencephalopathy with spheroids (HDLS) and pigmentary leukodystrophy (POLD): a single entity? Neurology 72:1953–1959

    PubMed  CAS  Google Scholar 

  183. Williams MM, Xiong C, Morris JC, Galvin JE (2006) Survival and mortality differences between dementia with Lewy bodies vs Alzheimer disease. Neurology 67:1935–1941

    PubMed  Google Scholar 

  184. Wullner U, Schmitt I, Kammal M, Kretzschmar HA, Neumann M (2009) Definite multiple system atrophy in a German family. J Neurol Neurosurg Psychiatry 80:449–450

    PubMed  CAS  Google Scholar 

  185. Wullner U, Schmitz-Hubsch T, Abele M et al (2007) Features of probable multiple system atrophy patients identified among 4770 patients with parkinsonism enrolled in the multicentre registry of the German Competence Network on Parkinson’s disease. J Neural Transm 114:1161–1165

    PubMed  CAS  Google Scholar 

  186. Yabe I, Soma H, Takei A et al (2006) MSA-C is the predominant clinical phenotype of MSA in Japan: analysis of 142 patients with probable MSA. J Neurol Sci 249:115–121

    PubMed  Google Scholar 

  187. Yamazaki M, Arai Y, Baba M et al (2000) Alpha-synuclein inclusions in amygdala in the brains of patients with the parkinsonism–dementia complex of Guam. J Neuropathol Exp Neurol 59:585–591

    PubMed  CAS  Google Scholar 

  188. Yancopoulou D, Xuereb JH, Crowther RA, Hodges JR, Spillantini MG (2005) Tau and alpha-synuclein inclusions in a case of familial frontotemporal dementia and progressive aphasia. J Neuropathol Exp Neurol 64:245–253

    PubMed  CAS  Google Scholar 

  189. Yokoyama T, Kusunoki JI, Hasegawa K, Sakai H, Yagishita S (2001) Distribution and dynamic process of neuronal cytoplasmic inclusion (NCI) in MSA: correlation of the density of NCI and the degree of involvement of the pontine nuclei. Neuropathology 21:145–154

    PubMed  CAS  Google Scholar 

  190. Yoshida M (2007) Multiple system atrophy: alpha-synuclein and neuronal degeneration. Neuropathology 27:484–493

    PubMed  Google Scholar 

  191. Yun JY, Lee WW, Lee JY et al (2010) SNCA variants and multiple system atrophy. Ann Neurol 67:554–555

    PubMed  Google Scholar 

  192. Zaccai J, Brayne C, McKeith I, Matthews F, Ince PG (2008) Patterns and stages of alpha-synucleinopathy: relevance in a population-based cohort. Neurology 70:1042–1048

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

GH is supported by a Senior Principal Research Fellowship of the National Health and Medical Research Council of Australia. The Queen Square Brain Bank, UCL Institute of Neurology is supported by the Reta Lila Weston Institute of Neurological Studies and the Progressive Supranuclear Palsy (Europe) Association. TR and JLH are supported by research grants from the Multiple System Atrophy Trust, Alzheimer’s Research UK and Parkinson’s UK. JLH is supported by the Reta Lila Weston Institute for Neurological Studies. This work was supported in part by the Wellcome/MRC Parkinson’s Disease Consortium grant to UCL Institute of Neurology, the University of Sheffield and the MRC Protein Phosphorylation Unit at the University of Dundee. This work was partly undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centers funding scheme. DWD is supported by Grants from the National Institutes of Health (R01-AG15866, P50-AG16574, P50-NS72187), Robert E. Jacoby Professorship in Alzheimer’s Research and Mayo Foundation for Research and Education. We would like to thank Dr. Zeshan Ahmed and Heidi Cartwright for assistance with the figure work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenda M. Halliday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halliday, G.M., Holton, J.L., Revesz, T. et al. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 122, 187–204 (2011). https://doi.org/10.1007/s00401-011-0852-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0852-9

Keywords

Navigation