Skip to main content

Advertisement

Log in

Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD)

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2015

Abstract

We examined regional distribution patterns of phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in frontotemporal lobar degeneration (FTLD). Immunohistochemistry was performed on 70 μm sections from FTLD-TDP autopsy cases (n = 39) presenting with behavioral variant frontotemporal dementia. Two main types of cortical pTDP-43 pathology emerged, characterized by either predominantly perikaryal pTDP-43 inclusions (cytoplasmic type, cFTLD) or long aggregates in dendrites (neuritic type, nFTLD). Cortical involvement in nFTLD was extensive and frequently reached occipital areas, whereas cases with cFTLD often involved bulbar somatomotor neurons and the spinal cord. We observed four patterns indicative of potentially sequential dissemination of pTDP-43: cases with the lowest burden of pathology (pattern I) were characterized by widespread pTDP-43 lesions in the orbital gyri, gyrus rectus, and amygdala. With increasing burden of pathology (pattern II) pTDP-43 lesions emerged in the middle frontal and anterior cingulate gyrus as well as in anteromedial temporal lobe areas, the superior and medial temporal gyri, striatum, red nucleus, thalamus, and precerebellar nuclei. More advanced cases showed a third pattern (III) with involvement of the motor cortex, bulbar somatomotor neurons, and the spinal cord anterior horn, whereas cases with the highest burden of pathology (pattern IV) were characterized by pTDP-43 lesions in the visual cortex. We interpret the four neuropathological patterns in bvFTD to be consistent with the hypothesis that pTDP-43 pathology can spread sequentially and may propagate along axonal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armstrong MJ, Litvan I, Lang AE et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80:496–503

    PubMed Central  PubMed  Google Scholar 

  2. Armstrong RA, Carter D, Cairns NJ (2012) A quantitative study of the neuropathology of 32 sporadic and familial cases of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). Neuropathol Appl Neurobiol 38:25–38

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Barbas H (2007) Specialized elements of orbitofrontal cortex in primates. Ann N Y Acad Sci 1121:10–32

    PubMed  Google Scholar 

  4. Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571

    CAS  PubMed  Google Scholar 

  5. Barbas H, Henion TH, Dermon CR (1991) Diverse thalamic projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 313:65–94

    CAS  PubMed  Google Scholar 

  6. Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375

    CAS  PubMed  Google Scholar 

  7. Barnes J, Whitwell JL, Frost C et al (2006) Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Arch Neurol 63:1434–1439

    PubMed  Google Scholar 

  8. Basar K, Sesia T, Groenewegen H et al (2010) Nucleus accumbens and impulsivity. Prog Neurobiol 92:533–557

    PubMed  Google Scholar 

  9. Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    PubMed Central  PubMed  Google Scholar 

  10. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  11. Braak H, Brettschneider J, Ludolph A et al (2013) Amyotrophic lateral sclerosis: a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Braak H, Del Tredici K, Rüb U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  13. Braak H, Rüb U, Del Tredici K (2003) Involvement of precerebellar nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 29:60–76

    CAS  PubMed  Google Scholar 

  14. Brettschneider J, Del Tredici K, Toledo JB et al (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74:20–38

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Brettschneider J, Libon DJ, Toledo JB et al (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123:395–407

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839

    PubMed Central  PubMed  Google Scholar 

  17. Broe M, Hodges JR, Schofield E et al (2003) Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology 60:1005–1011

    CAS  PubMed  Google Scholar 

  18. Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol 114:5–22

    PubMed Central  PubMed  Google Scholar 

  19. Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Colby DW, Prusiner SB (2011) De novo generation of prion strains. Nat Rev Microbiol 9:771–777

    PubMed Central  CAS  PubMed  Google Scholar 

  21. De Leon MJ, Convit A, George AE et al (1996) In vivo structural studies of the hippocampus in normal aging and in incipient Alzheimer’s disease. Ann N Y Acad Sci 777:1–13

    PubMed  Google Scholar 

  22. Dejesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Dickson DW, Braak H, Duda JE et al (2009) Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 8:1150–1157

    CAS  PubMed  Google Scholar 

  24. Duda JE, Giasson BI, Mabon ME et al (2002) Novel antibodies to synuclein show abundant striatal pathology in Lewy body diseases. Ann Neurol 52:205–210

    CAS  PubMed  Google Scholar 

  25. Fang PC, Stepniewska I, Kaas JH (2005) Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti. J Comp Neurol 490:305–333

    PubMed  Google Scholar 

  26. Feldengut S, Del Tredici K, Braak H (2013) Paraffin sections of 70–100mum: a novel technique and its benefits for studying the nervous system. J Neurosci Methods 215:241–244

    PubMed  Google Scholar 

  27. Folstein MF, Folstein SE, Mchugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    CAS  PubMed  Google Scholar 

  28. Forman MS, Farmer J, Johnson JK et al (2006) Frontotemporal dementia: clinicopathological correlations. Ann Neurol 59:952–962

    PubMed Central  PubMed  Google Scholar 

  29. Furukawa Y, Kaneko K, Watanabe S et al (2011) A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J Biol Chem 286:18664–18672

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Gambetti P, Cali I, Notari S et al (2011) Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol 121:79–90

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Garibotto V, Borroni B, Agosti C et al (2011) Subcortical and deep cortical atrophy in frontotemporal lobar degeneration. Neurobiol Aging 32:875–884

    PubMed  Google Scholar 

  32. Geser F, Brandmeir NJ, Kwong LK et al (2008) Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyotrophic lateral sclerosis. Arch Neurol 65:636–641

    PubMed  Google Scholar 

  33. Geser F, Martinez-Lage M, Robinson J et al (2009) Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 66:180–189

    PubMed Central  PubMed  Google Scholar 

  34. Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34:905–923

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Giannakopoulos P, Hof PR, Bouras C (1995) Dementia lacking distinctive histopathology: clinicopathological evaluation of 32 cases. Acta Neuropathol 89:346–355

    CAS  PubMed  Google Scholar 

  36. Gordon E, Rohrer JD, Kim LG et al (2010) Measuring disease progression in frontotemporal lobar degeneration: a clinical and MRI study. Neurology 74:666–673

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Gorno-Tempini ML, Hillis AE, Weintraub S et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–1014

    PubMed Central  PubMed  Google Scholar 

  38. Grossman M (2010) Primary progressive aphasia: clinicopathological correlations, nature reviews. Neurology 6:88–97

    PubMed Central  PubMed  Google Scholar 

  39. Guo JL, Covell DJ, Daniels JP et al (2013) Distinct alpha-synuclein strains differentially promote tau inclusions in neurons. Cell 154:103–117

    CAS  PubMed  Google Scholar 

  40. Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330

    PubMed  Google Scholar 

  41. Hornberger M, Geng J, Hodges JR (2011) Convergent grey and white matter evidence of orbitofrontal cortex changes related to disinhibition in behavioural variant frontotemporal dementia. Brain J Neurol 134:2502–2512

    Google Scholar 

  42. Hornberger M, Savage S, Hsieh S et al (2010) Orbitofrontal dysfunction discriminates behavioral variant frontotemporal dementia from Alzheimer’s disease. Dement Geriatr Cogn Disord 30:547–552

    CAS  PubMed  Google Scholar 

  43. Jack CR Jr, Petersen RC, Xu YC et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794

    PubMed Central  PubMed  Google Scholar 

  44. Josephs KA, Murray ME, Whitwell JL et al (2013) Staging TDP-43 pathology in Alzheimer’s disease. Acta neuropathologica [Epub ahead of print]

  45. Josephs KA, Stroh A, Dugger B et al (2009) Evaluation of subcortical pathology and clinical correlations in FTLD-U subtypes. Acta Neuropathol 118:349–358

    PubMed Central  PubMed  Google Scholar 

  46. Josephs KA, Whitwell JL, Murray ME et al (2013) Corticospinal tract degeneration associated with TDP-43 type C pathology and semantic dementia. Brain J Neurol 136:455–470

    Google Scholar 

  47. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Kanouchi T, Ohkubo T, Yokota T (2012) Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 83:739–745

    PubMed Central  PubMed  Google Scholar 

  49. Kaplan E, Goodglass H, Weintraub S (eds) (2001) Boston naming test. Lippincott Williams and Wilins, Philadelphia

    Google Scholar 

  50. Kersaitis C, Halliday GM, Kril JJ (2004) Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuropathol 108:515–523

    PubMed  Google Scholar 

  51. Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955

    CAS  PubMed  Google Scholar 

  52. Kril JJ, Halliday GM (2004) Clinicopathological staging of frontotemporal dementia severity: correlation with regional atrophy. Dement Geriatr Cogn Disord 17:311–315

    PubMed  Google Scholar 

  53. Kril JJ, Halliday GM (2011) Pathological staging of frontotemporal lobar degeneration. J Mol Neurosci 45:379–383

    CAS  PubMed  Google Scholar 

  54. Kril JJ, Macdonald V, Patel S et al (2005) Distribution of brain atrophy in behavioral variant frontotemporal dementia. J Neurol Sci 232:83–90

    PubMed  Google Scholar 

  55. Krueger CE, Dean DL, Rosen HJ et al (2010) Longitudinal rates of lobar atrophy in frontotemporal dementia, semantic dementia, and Alzheimer’s disease. Alzheimer Dis Assoc Disord 24:43–48

    PubMed Central  PubMed  Google Scholar 

  56. Kumfor F, Irish M, Hodges JR et al (2013) The orbitofrontal cortex is involved in emotional enhancement of memory: evidence from the dementias. Brain 136:2992–3003

    PubMed  Google Scholar 

  57. Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50

    CAS  Google Scholar 

  58. Lee EB, Leng LZ, Zhang B et al (2006) Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 281:4292–4299

    CAS  PubMed  Google Scholar 

  59. Lezak M (1983) Neuropsychological assessment. Oxford University Press, New York

    Google Scholar 

  60. Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    CAS  PubMed  Google Scholar 

  61. Lillo P, Garcin B, Hornberger M et al (2010) Neurobehavioral features in frontotemporal dementia with amyotrophic lateral sclerosis. Arch Neurol 67:826–830

    PubMed  Google Scholar 

  62. Lillo P, Mioshi E, Burrell JR et al (2012) Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS ONE 7:e43993

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Ling SC, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–438

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Liu W, Miller BL, Kramer JH et al (2004) Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology 62:742–748

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079

    PubMed  Google Scholar 

  66. Lu MT, Preston JB, Strick PL (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392

    CAS  PubMed  Google Scholar 

  67. Luk KC, Kehm VM, Zhang B et al (2012) Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. J Exp Med 209:975–986

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Mackenzie IR, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113

    PubMed Central  PubMed  Google Scholar 

  69. Mackenzie IR, Neumann M, Bigio EH et al (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117:15–18

    PubMed Central  PubMed  Google Scholar 

  70. Mann DM, South PW (1993) The topographic distribution of brain atrophy in frontal lobe dementia. Acta Neuropathol 85:334–340

    CAS  PubMed  Google Scholar 

  71. Mckhann GM, Albert MS, Grossman M et al (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809

    CAS  PubMed  Google Scholar 

  72. Mioshi E, Hsieh S, Savage S et al (2010) Clinical staging and disease progression in frontotemporal dementia. Neurology 74:1591–1597

    CAS  PubMed  Google Scholar 

  73. Mougenot AL, Nicot S, Bencsik A et al (2011) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33:2225–2228

    PubMed  Google Scholar 

  74. Munoz-Ruiz MA, Hartikainen P, Koikkalainen J et al (2012) Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry. PLoS ONE 7:e52531

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Neumann M, Kwong LK, Lee EB et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–149

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    CAS  PubMed  Google Scholar 

  77. Nishihira Y, Tan CF, Toyoshima Y et al (2009) Sporadic amyotrophic lateral sclerosis: widespread multisystem degeneration with TDP-43 pathology in a patient after long-term survival on a respirator. Neuropathology 29:689–696

    PubMed  Google Scholar 

  78. Nonaka T, Masuda-Suzukake M, Arai T et al (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep 4:124–134

    CAS  PubMed  Google Scholar 

  79. O’Callaghan C, Bertoux M, Hornberger M (2013) Beyond and below the cortex: the contribution of striatal dysfunction to cognition and behaviour in neurodegeneration. J Neurol Neurosurg Psychiatry [Epub ahead of print]

  80. Ozawa T, Paviour D, Quinn NP et al (2004) The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain J Neurol 127:2657–2671

    Google Scholar 

  81. Perry RJ, Graham A, Williams G et al (2006) Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dement Geriatr Cogn Disord 22:278–287

    PubMed  Google Scholar 

  82. Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6:994–1003

    CAS  PubMed  Google Scholar 

  83. Piguet O, Hornberger M, Mioshi E et al (2011) Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. Lancet Neurol 10:162–172

    PubMed  Google Scholar 

  84. Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209:889–893

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Porrino LJ, Crane AM, Goldman-Rakic PS (1981) Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J Comp Neurol 198:121–136

    CAS  PubMed  Google Scholar 

  87. Rabinovici GD, Seeley WW, Kim EJ et al (2007) Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 22:474–488

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Rascovsky K, Hodges JR, Knopman D et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477

    PubMed Central  PubMed  Google Scholar 

  89. Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811

    PubMed Central  PubMed  Google Scholar 

  90. Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11:760–772

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10:851–865

    CAS  PubMed  Google Scholar 

  92. Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    CAS  PubMed  Google Scholar 

  94. Rohrer JD, Geser F, Zhou J et al (2010) TDP-43 subtypes are associated with distinct atrophy patterns in frontotemporal dementia. Neurology 75:2204–2211

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Rosso SM, Donker Kaat L, Baks T et al (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126:2016–2022

    PubMed  Google Scholar 

  96. Safar J, Cohen FE, Prusiner SB (2000) Quantitative traits of prion strains are enciphered in the conformation of the prion protein. Archiv Virol 227–235

  97. Seelaar H, Rohrer JD, Pijnenburg YA et al (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82:476–486

    PubMed  Google Scholar 

  98. Snowden JS, Rollinson S, Thompson JC et al (2012) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135:693–708

    PubMed Central  PubMed  Google Scholar 

  99. Snowden JS, Thompson JC, Stopford CL et al (2011) The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain 134:2478–2492

    PubMed  Google Scholar 

  100. Tartaglia MC, Zhang Y, Racine C et al (2012) Executive dysfunction in frontotemporal dementia is related to abnormalities in frontal white matter tracts. J Neurol 259:1071–1080

    PubMed Central  CAS  PubMed  Google Scholar 

  101. The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418

    Google Scholar 

  102. Toledo JB, Van Deerlin VM, Lee EB et al (2013) A platform for discovery: the University of Pennsylvania integrated neurodegenerative disease biobank. Alzheimers Dement. doi:10.1016/j.jalz.2013.06.003

    PubMed Central  PubMed  Google Scholar 

  103. Van De Pol LA, Hensel A, Van Der Flier WM et al (2006) Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77:439–442

    PubMed Central  PubMed  Google Scholar 

  104. Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    CAS  PubMed  Google Scholar 

  106. Whitwell JL, Jack CR Jr, Parisi JE et al (2011) Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci 45:372–378

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Whitwell JL, Sampson EL, Watt HC et al (2005) A volumetric magnetic resonance imaging study of the amygdala in frontotemporal lobar degeneration and Alzheimer’s disease. Dement Geriatr Cogn Disord 20:238–244

    PubMed  Google Scholar 

  108. Wu CW, Bichot NP, Kaas JH (2000) Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. J Comp Neurol 423:140–177

    CAS  PubMed  Google Scholar 

  109. Xie SX, Baek Y, Grossman M et al (2011) Building an integrated neurodegenerative disease database at an academic health center. Alzheimers Dement 7:e84–e93

    PubMed Central  PubMed  Google Scholar 

  110. Yakovlev PI (1948) Motility, behavior and the brain; stereodynamic organization and neural coordinates of behavior. J Nerv Ment Dis 107:313–335

    CAS  PubMed  Google Scholar 

  111. Yu CE, Bird TD, Bekris LM et al (2010) The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol 67:161–170

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the many patients who contributed to this study. We are also grateful to Kevin Raible, Terry Schuck, Sigrid Baumann, Gabriele Ehmke, Simone Feldengut, Julia Straub, and Thi Phuong Thu Brettschneider for technical support, together with David Ewert (University of Ulm) for assistance with the graphics. This study was supported by the NIH (AG033101, AG017586, AG010124, AG032953, AG039510, NS044266), the Wyncote Foundation, and the Koller Family Foundation. VM-YL is the John H. Ware, 3rd, Professor of Alzheimer’s Disease Research. JQT is the William Maul Measey-Truman G. Schnabel, Jr. Professor of Geriatric Medicine and Gerontology. DJI is supported by T32-AG000255. This study was supported by the German BMBF FTLD Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Brettschneider.

Additional information

J. Brettschneider, K. Del Tredici, D. J. Irwin contributed equally.

H. Braak, J. Q. Trojanowski are Senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2013_1238_MOESM1_ESM.tif

Suppl. Fig. 1. Burden of pTDP-43 pathology in FTLD-TDP with cytoplasmic and neuritic type of cortical pathology. This bar plot illustrates the burden and regional distribution of pTDP-43 pathology in FTLD-TDP with cytoplasmic type of cortical pathology (n = 32) and with neuritic type of cortical pathology (n = 7). Bars indicate median and 95 % confidence interval, significant difference in Wilcoxon Mann–Whitney Test (p < 0.05) is indicated by asterisk. Abbreviations: OG – gyrus rectus and orbital gyri, AMG – amygdala, ENT – entorhinal cortex, HIP – hippocampal formation, MF – middle frontal gyrus, CG – anterior cingulate gyrus, SMT – superior or middle temporal gyrus, STR – striatum, PU – putamen, IO – inferior olive, RN – parvocellular portion of red nucleus, PON – pontine nuclei, TH – thalamus, MOT – agranular motor cortex (Brodmann areas 4 and 6), ANG – angular gyrus, SEN – somatosensory cortex, XII – hypoglossal nucleus, CSC – cervical spinal cord anterior horn, VIS – visual cortex (Brodmann areas 17 and 18), SN – substantia nigra, LC – locus coeruleus, DG – dentate nucleus of cerebellum. (TIFF 25105 kb)

401_2013_1238_MOESM2_ESM.tif

Suppl. Fig. 2. pTDP-43 pathology in 70 μm sections of FTLD-TDP with cytoplasmic and neuritic type of cortical pathology in relation to Mackenzie subtypes. This figure illustrates the two main types of cortical pTDP-43 pathology characterized by either predominantly perikaryal pTDP-43 inclusions (cytoplasmic type, cFTLD) or long aggregates in dendrites (neuritic type, nFTLD) and their relation to Mackenzie subtypes of cortical pTDP-43 pathology. The Mackenzie types of cortical pTDP-43 pathology were not readily ascertained in 70 μm sections, and Mackenzie subtypes A and B were combined to cFTLD. a 70 μm section of Mackenzie type A compared to the same tissue block sectioned at 7 μm shown in b, from which upper cortical layers are shown at higher resolution in c. d 70 μm section of Mackenzie type B compared to the same tissue block sectioned at 7 μm shown in e from which upper cortical layers are shown at higher resolution in f. g 70 μm section of Mackenzie type C, as compared to the same tissue block wctioned at 7 μm shown in h, from which upper cortical layers are shown in higher resolution in i. Scale bar in a applies to b, d, e, g, and h. Bar in c is also valid for f and i. (TIFF 1087 kb)

Supplementary material 3 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brettschneider, J., Del Tredici, K., Irwin, D.J. et al. Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD). Acta Neuropathol 127, 423–439 (2014). https://doi.org/10.1007/s00401-013-1238-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1238-y

Keywords

Navigation