Skip to main content
Log in

KV7 channelopathies

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

KV7 voltage-gated potassium channels, encoded by the KCNQ gene family, have caught increasing interest of the scientific community for their important physiological roles, which are emphasized by the fact that four of the five so far identified members are related to different hereditary diseases. Furthermore, these channels prove to be attractive pharmacological targets for treating diseases characterized by membrane hyperexcitability. KV7 channels are expressed in brain, heart, thyroid gland, pancreas, inner ear, muscle, stomach, and intestines. They give rise to functionally important potassium currents, reduction of which results in pathologies such as long QT syndrome, diabetes, neonatal epilepsy, neuromyotonia, or progressive deafness. Here, we summarize some key traits of KV7 channels and review how their molecular deficiencies could explain diverse disease phenotypes. We also assess the therapeutic potential of KV7 channels; in particular, how the activation of KV7 channels by the compounds retigabine and R-L3 may be useful for treatment of epilepsy or cardiac arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23

    Article  PubMed  Google Scholar 

  2. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jørgensen T, Sandbaek A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T, Kubo M, Babazono T, Hirose H, Hayashi M, Iwamoto Y, Kashiwagi A, Kaku K, Kawamori R, Tai ES, Pedersen O, Kamatani N, Kadowaki T, Kikkawa R, Nakamura Y, Maeda S (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–1102

    Article  PubMed  CAS  Google Scholar 

  3. Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    Article  PubMed  CAS  Google Scholar 

  4. Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55

    Article  PubMed  CAS  Google Scholar 

  5. Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV, McHarg ML, Gagnon D, Rosales TO, Peiffer A, Anderson VE, Leppert M (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29

    Article  PubMed  CAS  Google Scholar 

  6. Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK (2001) Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci USA 98:12272–12277

    Article  PubMed  CAS  Google Scholar 

  7. Wuttke TV, Jurkat-Rott K, Paulus W, Garncarek M, Lehmann-Horn F, Lerche H (2007) Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 69:2045–2053

    Article  PubMed  CAS  Google Scholar 

  8. Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446

    Article  PubMed  CAS  Google Scholar 

  9. Jentsch TJ (2000) Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1:21–30

    Article  PubMed  CAS  Google Scholar 

  10. Chouabe C, Neyroud N, Guicheney P, Lazdunski M, Romey G, Barhanin J (1997) Properties of KvLQT1 K+ channel mutations in Romano–Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J 16:5472–5479

    Article  PubMed  CAS  Google Scholar 

  11. Lerche H, Biervert C, Alekov AK, Schleithoff L, Lindner M, Klinger W, Bretschneider F, Mitrovic N, Jurkat-Rott K, Bode H, Lehmann-Horn F, Steinlein OK (1999) A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol 46:305–312

    Article  PubMed  CAS  Google Scholar 

  12. Schroeder BC, Kubisch C, Stein V, Jentsch TJ (1998) Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396:687–690

    Article  PubMed  CAS  Google Scholar 

  13. Wollnik B, Schroeder BC, Kubisch C, Esperer HD, Wieacker P, Jentsch TJ (1997) Pathophysiological mechanisms of dominant and recessive KvLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Gen 6:1943–1949

    Article  PubMed  CAS  Google Scholar 

  14. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80

    Article  PubMed  CAS  Google Scholar 

  15. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature 384:80–83

    Article  PubMed  CAS  Google Scholar 

  16. Goldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL, Noebels JL (2009) Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med 1:2–6

    Google Scholar 

  17. Jespersen T, Grunnet M, Olesen SP (2005) The KCNQ1 potassium channel: from gene to physiological function. Physiology 20:408–416

    Article  PubMed  CAS  Google Scholar 

  18. Vallon V, Grahammer F, Richter K, Bleich M, Lang F, Barhanin J, Völkl H, Warth R (2001) Role of KCNE1-dependent K+ fluxes in mouse proximal tubule. J Am Soc Nephrol 12:2003–2011

    PubMed  CAS  Google Scholar 

  19. Arrighi I, Bloch-Faure M, Grahammer F, Bleich M, Warth R, Mengual R, Drici MD, Barhanin J, Meneton P (2001) Altered potassium balance and aldosterone secretion in a mouse model of human congenital long QT syndrome. Proc Natl Acad Sci U S A 98:8792–8797

    Article  PubMed  CAS  Google Scholar 

  20. Warth R, Barhanin J (2002) The multifaceted phenotype of the knockout mouse for the KCNE1 potassium channel gene. Am J Physiol Regul Integr Comp Physiol 282:R639–R648

    PubMed  CAS  Google Scholar 

  21. Maljevic S, Lerche C, Seebohm G, Alekov AK, Busch AE, Lerche H (2003) C-terminal interaction of KCNQ2 and KCNQ3 K+ channels. J Physiol 548:353–360

    PubMed  CAS  Google Scholar 

  22. Schmitt N, Schwarz M, Peretz A, Abitbol I, Attali B, Pongs O (2000) A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. Embo J 19:332–340

    Article  PubMed  CAS  Google Scholar 

  23. Schwake M, Jentsch TJ, Friedrich T (2003) A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep 4:76–81

    Article  PubMed  CAS  Google Scholar 

  24. Wang W, Xia J, Kass RS (1998) MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel. J Biol Chem 273:34069–34074

    Article  PubMed  CAS  Google Scholar 

  25. Morin TJ, Kobertz WR (2008) Counting membrane-embedded KCNE beta-subunits in functioning K+ channel complexes. Proc Natl Acad Sci USA 105:1478–1482

    Article  PubMed  Google Scholar 

  26. Vanoye CG, Welch RC, Tian C, Sanders CR, George AL Jr (2010) KCNQ1/KCNE1 assembly, co-translation not required. Channels (Austin) 4(2) [In press]

  27. Melman YF, Krumerman A, McDonald TV (2002) A single transmembrane site in the KCNE-encoded proteins controls the specificity of KvLQT1 channel gating. J Biol Chem 277:25187–25194

    Article  PubMed  CAS  Google Scholar 

  28. Kang C, Tian C, Sönnichsen FD, Smith JA, Meiler J, George AL Jr, Vanoye CG, Kim HJ, Sanders CR (2008) Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry 47:7999–8006

    Article  PubMed  CAS  Google Scholar 

  29. Bendahhou S, Marionneau C, Haurogne K, Larroque MM, Derand R, Szuts V, Escande D, Demolombe S, Barhanin J (2005) In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart. Cardiovasc Res 67:529–538

    Article  PubMed  CAS  Google Scholar 

  30. Lundquist AL, Manderfield LJ, Vanoye CG, Rogers CS, Donahue BS, Chang PA, Drinkwater DC, Murray KT, George AL Jr (2005) Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks). J Mol Cell Cardiol 38:277–287

    Article  PubMed  CAS  Google Scholar 

  31. Seebohm G (2009) Kv7.1 in atrial fibrillation. Heart Rhythm 6:1154–1155

    Article  PubMed  Google Scholar 

  32. Jespersen T, Rasmussen HB, Grunnet M, Jensen HS, Angelo K, Dupuis DS, Vogel LK, Jorgensen NK, Klaerke DA, Olesen SP (2004) Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. J Cell Sci 117:4517–4526

    Article  PubMed  CAS  Google Scholar 

  33. Seebohm G, Strutz-Seebohm N, Birkin R, Dell G, Bucci C, Spinosa MR, Baltaev R, Mack AF, Korniychuk G, Choudhury A, Marks D, Pagano RE, Attali B, Pfeufer A, Kass RS, Sanguinetti MC, Tavare JM, Lang F (2007) Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res 100:686–692

    Article  PubMed  CAS  Google Scholar 

  34. Loussouarn G, Park KH, Bellocq C, Baró I, Charpentier F, Escande D (2003) Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J 22:5412–5421

    Article  PubMed  CAS  Google Scholar 

  35. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS (2002) Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1–KCNE1 potassium channel. Science 295:496–499

    Article  PubMed  CAS  Google Scholar 

  36. Boulet IR, Raes AL, Ottschytsch N, Snyders DJ (2006) Functional effects of a KCNQ1 mutation associated with the long QT syndrome. Cardiovasc Res 70:466–474

    Article  PubMed  CAS  Google Scholar 

  37. Dahimène S, Alcoléa S, Naud P, Jourdon P, Escande D, Brasseur R, Thomas A, Baró I, Mérot J (2006) The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano–Ward LQT1 syndrome. Circ Res 99:1076–1083

    Article  PubMed  CAS  Google Scholar 

  38. Harmer SC, Tinker A (2007) The role of abnormal trafficking of KCNE1 in long QT syndrome 5. Biochem Soc Trans 35:1074–1076

    Article  PubMed  CAS  Google Scholar 

  39. Krumerman A, Gao X, Bian JS, Melman YF, Kagan A, McDonald TV (2004) An LQT mutant minK alters KvLQT1 trafficking. Am J Physiol Cell Physiol 286:C1453–C1463

    Article  PubMed  CAS  Google Scholar 

  40. Peroz D, Dahimène S, Baró I, Loussouarn G, Mérot J (2009) LQT1-associated mutations increase KCNQ1 proteasomal degradation independently of Derlin-1. J Biol Chem 284:5250–5256

    Article  PubMed  CAS  Google Scholar 

  41. Schmitt N, Calloe K, Nielsen NH, Buschmann M, Speckmann EJ, Schulze-Bahr E, Schwarz M (2007) The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochem Biophys Res Commun 358:304–310

    Article  PubMed  CAS  Google Scholar 

  42. Seebohm G, Strutz-Seebohm N, Ureche ON, Henrion U, Baltaev R, Mack AF, Korniychuk G, Steinke K, Tapken D, Pfeufer A, Kääb S, Bucci C, Attali B, Merot J, Tavare JM, Hoppe UC, Sanguinetti MC, Lang F (2008) Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels. Circ Res 103:1451–1457

    Article  PubMed  Google Scholar 

  43. Franqueza L, Lin M, Shen J, Splawski I, Keating MT, Sanguinetti MC (1999) Long QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits. J Biol Chem 274:21063–21070

    Article  PubMed  CAS  Google Scholar 

  44. Seebohm G, Scherer CR, Busch AE, Lerche C (2001) Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome. J Biol Chem 276:13600–13605

    PubMed  CAS  Google Scholar 

  45. Seebohm G, Westenskow P, Lang F, Sanguinetti MC (2005) Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels. J Physiol 563:359–368

    Article  PubMed  CAS  Google Scholar 

  46. Schwartz PJ, Zaza A, Locati E, Moss AJ (1991) Stress and sudden death. The case of the long QT syndrome. Circulation 83:II71–II80

    PubMed  CAS  Google Scholar 

  47. Fodstad H, Bendahhou S, Rougier JS, Laitinen-Forsblom PJ, Barhanin J, Abriel H, Schild L, Kontula K, Swan H (2006) Molecular characterization of two founder mutations causing long QT syndrome and identification of compound heterozygous patients. Ann Med 38:294–304

    Article  PubMed  CAS  Google Scholar 

  48. Ning L, Moss AJ, Zareba W, Robinson J, Rosero S, Ryan D, Qi M (2003) Novel compound heterozygous mutations in the KCNQ1 gene associated with autosomal recessive long QT syndrome (Jervell and Lange-Nielsen syndrome). Ann Noninvasive Electrocardiol 8:246–250

    Article  PubMed  Google Scholar 

  49. Roepke TK, King EC, Reyna-Neyra A, Paroder M, Purtell K, Koba W, Fine E, Lerner DJ, Carrasco N, Abbott GW (2009) Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med 15:1186–1194

    Article  PubMed  CAS  Google Scholar 

  50. Ullrich S, Su J, Ranta F, Wittekindt OH, Ris F, Rösler M, Gerlach U, Heitzmann D, Warth R, Lang F (2005) Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch 451:428–436

    Article  PubMed  CAS  Google Scholar 

  51. Lehtinen AB, Daniel KR, Shah SA, Nelson MR, Ziegler JT, Freedman BI, Carr JJ, Herrington DM, Langefeld CD, Bowden DW (2009) Relationship between genetic variants in myocardial sodium and potassium channel genes and QT interval duration in diabetics: the Diabetes Heart Study. Ann Noninvasive Electrocardiol 14:72–79

    Article  PubMed  Google Scholar 

  52. Yang WP, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, Blanar MA (1998) Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem 273:19419–19423

    Article  PubMed  CAS  Google Scholar 

  53. Cooper EC, Aldape KD, Abosch A, Barbaro NM, Berger MS, Peacock WS, Jan YN, Jan LY (2000) Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci U S A 97:4914–4919

    Article  PubMed  CAS  Google Scholar 

  54. Tinel N, Lauritzen I, Chouabe C, Lazdunski M, Borsotto M (1998) The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Lett 438:171–176

    Article  PubMed  CAS  Google Scholar 

  55. Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–1893

    Article  PubMed  CAS  Google Scholar 

  56. Maljevic S, Wuttke TV, Lerche H (2008) Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol 586:1791–1801

    Article  PubMed  CAS  Google Scholar 

  57. Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K+ channel. J Neurosci 24:1236–1244

    Article  PubMed  CAS  Google Scholar 

  58. Schwake M, Pusch M, Kharkovets T, Jentsch TJ (2000) Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem 275:13343–13348

    Article  PubMed  CAS  Google Scholar 

  59. Etxeberria A, Santana-Castro I, Regalado MP, Aivar P, Villarroel A (2004) Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation. J Neurosci 24:9146–9152

    Article  PubMed  CAS  Google Scholar 

  60. Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676

    Article  PubMed  CAS  Google Scholar 

  61. Alfonso I, Hahn JS, Papazian O, Martinez YL, Reyes MA, Aicardi J (1997) Bilateral tonic-clonic epileptic seizures in non-benign familial neonatal convulsions. Pediatr Neurol 16:249–251

    Article  PubMed  CAS  Google Scholar 

  62. Borgatti R, Zucca C, Cavallini A, Ferrario M, Panzeri C, Castaldo P, Soldovieri MV, Baschirotto C, Bresolin N, Dalla Bernardina B, Taglialatela M, Bassi MT (2004) A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology 63:57–65

    PubMed  CAS  Google Scholar 

  63. Dedek K, Fusco L, Teloy N, Steinlein OK (2003) Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res 54:21–27

    Article  PubMed  CAS  Google Scholar 

  64. Schmitt B, Wohlrab G, Sander T, Steinlein OK, Hajnal BL (2005) Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res 65:161–168

    Article  PubMed  Google Scholar 

  65. Steinlein OK, Conrad C, Weidner B (2007) Benign familial neonatal convulsions: always benign? Epilepsy Res 73:245–249

    Article  PubMed  CAS  Google Scholar 

  66. Coppola G, Castaldo P, Miraglia del Giudice E, Bellini G, Galasso F, Soldovieri MV, Anzalone L, Sferro C, Annunziato L, Pascotto A, Taglialatela M (2003) A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology 61:131–134

    PubMed  CAS  Google Scholar 

  67. Neubauer BA, Waldegger S, Heinzinger J, Hahn A, Kurlemann G, Fiedler B, Eberhard F, Muhle H, Stephani U, Garkisch S, Eeg-Olofsson O, Müller U, Sander T (2008) KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes. Neurology 71:177–183

    Article  PubMed  CAS  Google Scholar 

  68. Heron SE, Cox K, Grinton BE, Zuberi SM, Kivity S, Afawi Z, Straussberg R, Berkovic SF, Scheffer IE, Mulley JC (2007) Deletions or duplications in KCNQ2 can cause benign familial neonatal seizures. J Med Genet 44:791–796

    Article  PubMed  CAS  Google Scholar 

  69. Hirose S, Zenri F, Akiyoshi H, Fukuma G, Iwata H, Inoue T, Yonetani M, Tsutsumi M, Muranaka H, Kurokawa T, Hanai T, Wada K, Kaneko S, Mitsudome A (2000) A novel mutation of KCNQ3 (c.925T–C) in a Japanese family with benign familial neonatal convulsions. Ann Neurol 47:822–826

    Article  PubMed  CAS  Google Scholar 

  70. Singh NA, Westenskow P, Charlier C, Pappas C, Leslie J, Dillon J, Anderson VE, Sanguinetti MC, Leppert MF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 126:2726–2737

    Article  PubMed  Google Scholar 

  71. Miceli F, Soldovieri MV, Lugli L, Bellini G, Ambrosino P, Migliore M, del Giudice EM, Ferrari F, Pascotto A, Taglialatela M (2009) Neutralization of a unique, negatively-charged residue in the voltage sensor of KV 7.2 subunits in a sporadic case of benign familial neonatal seizures. Neurobiol Dis 34:501–510

    Article  PubMed  CAS  Google Scholar 

  72. Soldovieri MV, Cilio MR, Miceli F, Bellini G, Miraglia del Giudice E, Castaldo P, Hernandez CC, Shapiro MS, Pascotto A, Annunziato L, Taglialatela M (2007) Atypical gating of M-type potassium channels conferred by mutations in uncharged residues in the S4 region of KCNQ2 causing benign familial neonatal convulsions. J Neurosci 27:4919–4928

    Article  PubMed  CAS  Google Scholar 

  73. Alaimo A, Gómez-Posada JC, Aivar P, Etxeberría A, Rodriguez-Alfaro JA, Areso P, Villarroel A (2009) Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem 284:20668–20675

    Article  PubMed  CAS  Google Scholar 

  74. Soldovieri MV, Castaldo P, Iodice L, Miceli F, Barrese V, Bellini G, Miraglia del Giudice E, Pascotto A, Bonatti S, Annunziato L, Taglialatela M (2006) Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem 281:418–428

    Article  PubMed  CAS  Google Scholar 

  75. Singh NA, Otto JF, Dahle EJ, Pappas C, Leslie JD, Vilaythong A, Noebels JL, White HS, Wilcox KS, Leppert MF (2008) Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol 586:3405–3423

    Article  PubMed  CAS  Google Scholar 

  76. Otto JF, Singh NA, Dahle EJ, Leppert MF, Pappas CM, Pruess TH, Wilcox KS, White HS (2009) Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human Kcnq2 and Kcnq3 mutations for benign familial neonatal convulsions. Epilepsia [In press]

  77. Okada M, Zhu G, Hirose S, Ito KI, Murakami T, Wakui M, Kaneko S (2003) Age-dependent modulation of hippocampal excitability by KCNQ-channels. Epilepsy Res 53:81–94

    Article  PubMed  CAS  Google Scholar 

  78. Safiulina VF, Zacchi P, Taglialatela M, Yaari Y, Cherubini E (2008) Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus. J Physiol 586:5437–5453

    Article  PubMed  CAS  Google Scholar 

  79. Smith JS, Iannotti CA, Dargis P, Christian EP, Aiyar J (2001) Differential expression of kcnq2 splice variants: implications to m current function during neuronal development. J Neurosci 21:1096–1103

    PubMed  CAS  Google Scholar 

  80. Hart IK, Maddison P, Newsom-Davis J, Vincent A, Mills KR (2002) Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain 125:1887–1895

    Article  PubMed  Google Scholar 

  81. Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136–140

    Article  PubMed  CAS  Google Scholar 

  82. Hilgert N, Smith RJ, Van Camp G (2009) Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res 681:189–196

    Article  PubMed  CAS  Google Scholar 

  83. Kamada F, Kure S, Kudo T, Suzuki Y, Oshima T, Ichinohe A, Kojima K, Niihori T, Kanno J, Narumi Y, Narisawa A, Kato K, Aoki Y, Ikeda K, Kobayashi T, Matsubara Y (2006) A novel KCNQ4 one-base deletion in a large pedigree with hearing loss: implication for the genotype–phenotype correlation. J Hum Genet 51:455–460

    Article  PubMed  CAS  Google Scholar 

  84. Coucke PJ, Van Hauwe P, Kelley PM, Kunst H, Schatteman I, Van Velzen D, Meyers J, Ensink RJ, Verstreken M, Declau F, Marres H, Kastury K, Bhasin S, McGuirt WT, Smith RJ, Cremers CW, Van de Heyning P, Willems PJ, Smith SD, Van Camp G (1999) Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet 8:1321–1328

    Article  PubMed  CAS  Google Scholar 

  85. De Leenheer EM, Ensink RJ, Kunst HP, Marres HA, Talebizadeh Z, Declau F, Smith SD, Usami S, Van de Heyning PH, Van Camp G, Huygen PL, Cremers CW (2002) DFNA2/KCNQ4 and its manifestations. Adv Otorhinolaryngol 61:41–46

    PubMed  Google Scholar 

  86. Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci USA 97:4333–4338

    Article  PubMed  CAS  Google Scholar 

  87. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K–Cl co-transporter Kcc4. Nature 416:874–878

    Article  PubMed  CAS  Google Scholar 

  88. Hildebrand MS, Tack D, McMordie SJ, DeLuca A, Hur IA, Nishimura C, Huygen P, Casavant TL, Smith RJ (2008) Audioprofile-directed screening identifies novel mutations in KCNQ4 causing hearing loss at the DFNA2 locus. Genet Med 10:797–804

    Article  PubMed  CAS  Google Scholar 

  89. Mencía A, González-Nieto D, Modamio-Høybjør S, Etxeberría A, Aránguez G, Salvador N, Del Castillo I, Villarroel A, Moreno F, Barrio L, Moreno-Pelayo MA (2008) A novel KCNQ4 pore-region mutation (p.G296S) causes deafness by impairing cell-surface channel expression. Hum Genet 123:41–53

    Article  PubMed  CAS  Google Scholar 

  90. Su CC, Yang JJ, Shieh JC, Su MC, Li SY (2007) Identification of novel mutations in the KCNQ4 gene of patients with nonsyndromic deafness from Taiwan. Audiol Neurootol 12:20–26

    Article  PubMed  CAS  Google Scholar 

  91. Talebizadeh Z, Kelley PM, Askew JW, Beisel KW, Smith SD (1999) Novel mutation in the KCNQ4 gene in a large kindred with dominant progressive hearing loss. Hum Mutat 14:493–501

    Article  PubMed  CAS  Google Scholar 

  92. Van Hauwe P, Coucke PJ, Ensink RJ, Huygen P, Cremers CW, Van Camp G (2000) Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. Am J Med Genet 93:184–187

    Article  PubMed  Google Scholar 

  93. Akita J, Abe S, Shinkawa H, Kimberling WJ, Usami S (2001) Clinical and genetic features of nonsyndromic autosomal dominant sensorineural hearing loss: KCNQ4 is a gene responsible in Japanese. J Hum Genet 46:355–361

    Article  PubMed  CAS  Google Scholar 

  94. Topsakal V, Pennings RJ, te Brinke H, Hamel B, Huygen PL, Kremer H, Cremers CW (2005) Phenotype determination guides swift genotyping of a DFNA2/KCNQ4 family with a hot spot mutation (W276S). Otol Neurotol 26:52–58

    Article  PubMed  Google Scholar 

  95. Van Camp G, Coucke PJ, Akita J, Fransen E, Abe S, De Leenheer EM, Huygen PL, Cremers CW, Usami S (2002) A mutational hot spot in the KCNQ4 gene responsible for autosomal dominant hearing impairment. Hum Mutat 20:15–19

    Article  PubMed  CAS  Google Scholar 

  96. Kharkovets T, Dedek K, Maier H, Schweizer M, Khimich D, Nouvian R, Vardanyan V, Leuwer R, Moser T, Jentsch TJ (2006) Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. Embo J 25:642–652

    Article  PubMed  CAS  Google Scholar 

  97. Strutz-Seebohm N, Seebohm G, Fedorenko O, Baltaev R, Engel J, Knirsch M, Lang F (2006) Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes. Cell Physiol Biochem 18:57–66

    Article  PubMed  CAS  Google Scholar 

  98. Lerche C, Scherer CR, Seebohm G, Derst C, Wei AD, Busch AE, Steinmeyer K (2000) Molecular cloning and functional expression of KCNQ5, a potassium channel subunit that may contribute to neuronal M-current diversity. J Biol Chem 275:22395–22400

    Article  PubMed  CAS  Google Scholar 

  99. Schroeder BC, Hechenberger M, Weinreich F, Kubisch C, Jentsch TJ (2000) KCNQ5, a novel potassium channel broadly expressed in brain, mediates M-type currents. J Biol Chem 275:24089–24095

    Article  PubMed  CAS  Google Scholar 

  100. Kananura C, Biervert C, Hechenberger M, Engels H, Steinlein OK (2000) The new voltage gated potassium channel KCNQ5 and neonatal convulsions. Neuroreport 11:2063–2067

    Article  PubMed  CAS  Google Scholar 

  101. Xiong Q, Gao Z, Wang W, Li M (2008) Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds. Trends Pharmacol Sci 29:99–107

    Article  PubMed  CAS  Google Scholar 

  102. Salata JJ, Jurkiewicz NK, Wang J, Evans BE, Orme HT, Sanguinetti MC (1998) A novel benzodiazepine that activates cardiac slow delayed rectifier K+ channels. Mol Pharmacol 53:220–230

    Google Scholar 

  103. Xu X, Salata JJ, Wang J, Wu Y, Yan GX, Liu T, Marinchak RA, Kowey PR (2002) Increasing I(Ks) corrects abnormal repolarization in rabbit models of acquired LQT2 and ventricular hypertrophy. Am J Physiol Heart Circ Physiol 283:H664–H670

    PubMed  CAS  Google Scholar 

  104. Seebohm G, Pusch M, Chen J, Sanguinetti MC (2003) Pharmacological activation of normal and arrhythmia-associated mutant KCNQ1 potassium channels. Circ Res 93:941–947

    Article  PubMed  CAS  Google Scholar 

  105. Gerlach U (2003) Blockers of the slowly delayed rectifier potassium IKs channel: potential antiarrhythmic agents. Curr Med Chem Cardiovasc Hematol Agents 1:243–252

    Article  PubMed  CAS  Google Scholar 

  106. Lerche C, Bruhova I, Lerche H, Steinmeyer K, Wei AD, Strutz-Seebohm N, Lang F, Busch AE, Zhorov BS, Seebohm G (2007) Chromanol 293B binding in KCNQ1 (Kv7.1) channels involves electrostatic interactions with a potassium ion in the selectivity filter. Mol Pharmacol 71:1503–1511, Erratum in: Mol Pharmacol (2007) 72:796

    Article  PubMed  CAS  Google Scholar 

  107. Lerche C, Seebohm G, Wagner CI, Scherer CR, Dehmelt L, Abitbol I, Gerlach U, Brendel J, Attali B, Busch AE (2000) Molecular impact of MinK on the enantiospecific block of I(Ks) by chromanols. Br J Pharmacol 131:1503–1506

    Article  PubMed  CAS  Google Scholar 

  108. Wuttke TV, Lerche H (2006) Novel anticonvulsant drugs targeting voltage-dependent ion channels. Expert Opin Investig Drugs 15:1167–1177

    Article  PubMed  CAS  Google Scholar 

  109. Otto JF, Kimball MM, Wilcox KS (2002) Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. Mol Pharmacol 61:921–927

    Article  PubMed  CAS  Google Scholar 

  110. Rundfeldt C, Netzer R (2000) The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 282:73–76

    Article  PubMed  CAS  Google Scholar 

  111. Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, Shabat D, Attali B (2005) Meclofenamic acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel openers, depress cortical neuron activity and exhibit anticonvulsant properties. Mol Pharmacol 67:1053–1066

    Article  PubMed  CAS  Google Scholar 

  112. Lange W, Geissendörfer J, Schenzer A, Grötzinger J, Seebohm G, Friedrich T, Schwake M (2009) Refinement of the binding site and mode of action of the anticonvulsant retigabine on KCNQ K+ channels. Mol Pharmacol 75:272–280

    Article  PubMed  CAS  Google Scholar 

  113. Schenzer A, Friedrich T, Pusch M, Saftig P, Jentsch TJ, Grotzinger J, Schwake M (2005) Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine. J Neurosci 25:5051–5060

    Article  PubMed  CAS  Google Scholar 

  114. Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H (2005) The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 67:1009–1017

    Article  PubMed  CAS  Google Scholar 

  115. Li H, Li N, Shen L, Jiang H, Yang Q, Song Y, Guo J, Xia K, Pan Q, Tang B (2008) A novel mutation of KCNQ3 gene in a Chinese family with benign familial neonatal convulsions. Epilepsy Res 79:1–5

    Article  PubMed  CAS  Google Scholar 

  116. Hunter J, Maljevic S, Shankar A, Siegel A, Weissman B, Holt P, Olson L, Lerche H, Escayg A (2006) Subthreshold changes of voltage-dependent activation of the K(V)7.2 channel in neonatal epilepsy. Neurobiol Dis 24:194–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Ministry for Education and Research (BMBF: E-rare/EuroBFNS/01GM0804 and NGFNplus/01GS08123), the European Union (Epicure: LSH 037315) and German Research Foundation (DFG SE1077/3-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Lerche.

Additional information

Snezana Maljevic, Thomas V. Wuttke, and Guiscard Seebohm contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maljevic, S., Wuttke, T.V., Seebohm, G. et al. KV7 channelopathies. Pflugers Arch - Eur J Physiol 460, 277–288 (2010). https://doi.org/10.1007/s00424-010-0831-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0831-3

Keywords

Navigation