Skip to main content

Advertisement

Log in

Accuracy of stimulating electrode placement in paediatric pallidal deep brain stimulation for primary and secondary dystonia

  • Clinical Article - Functional
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Accuracy of electrode placement is an important determinant of outcome following deep brain stimulation (DBS) surgery. Data on accuracy of electrode placement into the globus pallidum interna (GPi) in paediatric patients is limited, particularly those with non-primary dystonia who often have smaller GPi. Pallidal DBS is known to be more effective in the treatment of primary dystonia compared with secondary dystonia.

Objectives

We aimed to determine if accuracy of pallidal electrode placement differed between primary, secondary and NBIA (neuronal degeneration and brain iron accumulation) associated dystonia and how this related to motor outcome following surgery.

Methods

A retrospective review of a consecutive cohort of children and young people undergoing DBS surgery in a single centre. Fused in frame preoperative planning magnetic resonance imaging (MRI) and postoperative computed tomography (CT) brain scans were used to determine the accuracy of placement of DBS electrode tip in Leskell stereotactic system compared with the planned target. The differences along X, Y, and Z coordinates were calculated, as was the Euclidean distance of electrode tip from the target. The relationship between proximity to target and change in Burke-Fahn-Marsden Dystonia Rating Scale at 1 year was also measured.

Results

Data were collected from 88 electrodes placed in 42 patients (14 primary dystonia, 18 secondary dystonia and 10 NBIA associated dystonia). Median differences between planned target and actual position were: left-side X-axis 1.05 mm, Y-axis 0.85 mm, Z-axis 0.94 mm and Euclidean difference 2.04 mm; right-side X-axis 1.28 mm, Y-axis 0.70 mm, Z-axis 0.70 mm and Euclidean difference 2.45 mm. Accuracy did not differ between left and right-sided electrodes. No difference in accuracy was seen between primary, secondary or NBIA associated dystonia. Dystonia reduction at 1 year post surgery did not appear to relate to proximity of implanted electrode to surgical target across the cohort.

Conclusions

Accuracy of surgical placement did not differ between primary, secondary or NBIA associated dystonia. Decreased efficacy of pallidal DBS in secondary and NBIA associated dystonia is unlikely to be related to difficulties in achieving the planned electrode placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker KB, Tkach JA, Phillips MD, Rezai AR (2006) Variability in RF-induced heating of a deep brain stimulation implant across MR systems. J Magn Reson Imaging 24:1236–1242

    Article  PubMed  Google Scholar 

  2. Bjartmarz H, Rehncrona S (2007) Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg 85:235–242

    Article  PubMed  Google Scholar 

  3. Burke RE, Fahn S, Marsden CD, Bressman SB, Moskowitz C, Friedman J (1985) Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 35:73–77

    Article  PubMed  CAS  Google Scholar 

  4. Chang WS, Kim HY, Kim JP, Park YS, Chung SS, Chang JW (2011) Bilateral subthalamic deep brain stimulation using single track microelectrode recording. Acta Neurochir (Wien) 153:1087–1095

    Article  Google Scholar 

  5. Coubes P, Cif L, El Fertit H, Hemm S, Vayssiere N, Serrat S, Picot MC, Tuffery S, Claustres M, Echenne B, Frerebeau P (2004) Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg 101:189–194

    Article  PubMed  Google Scholar 

  6. Coyne T, Silburn P, Cook R, Silberstein P, Mellick G, Sinclair F, Fracchia G, Wasson D, Stanwell P (2006) Rapid subthalamic nucleus deep brain stimulation lead placement utilising CT/MRI fusion, microelectrode recording and test stimulation. Acta Neurochir Suppl 99:49–50

    Article  PubMed  CAS  Google Scholar 

  7. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, Rougier A (2002) Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97:591–597

    Article  PubMed  Google Scholar 

  8. D'Haese PF, Pallavaram S, Konrad PE, Neimat J, Fitzpatrick JM, Dawant BM (2010) Clinical accuracy of a customized stereotactic platform for deep brain stimulation after accounting for brain shift. Stereotact Funct Neurosurg 88:81–87

    Article  PubMed  Google Scholar 

  9. Eltahawy HA, Saint-Cyr J, Giladi N, Lang AE, Lozano AM (2004) Primary dystonia is more responsive than secondary dystonia to pallidal interventions: outcome after pallidotomy or pallidal deep brain stimulation. Neurosurgery 54:613–619

    Article  PubMed  Google Scholar 

  10. Fahn S (2011) Classification of movement disorders. Mov Disord 26:947–957

    Article  PubMed  Google Scholar 

  11. Ferroli P, Franzini A, Marras C, Maccagnano E, D'Incerti L, Broggi G (2004) A simple method to assess accuracy of deep brain stimulation electrode placement: pre-operative stereotactic CT + postoperative MR image fusion. Stereotact Funct Neurosurg 82:14–19

    Article  PubMed  Google Scholar 

  12. Fiegele T, Feuchtner G, Sohm F, Bauer R, Anton JV, Gotwald T, Twerdy K, Eisner W (2008) Accuracy of stereotactic electrode placement in deep brain stimulation by intraoperative computed tomography. Parkinsonism Relat Disord 14:595–599

    Article  PubMed  Google Scholar 

  13. Fitzpatrick JM, Konrad PE, Nickele C, Cetinkaya E, Kao C (2005) Accuracy of customized miniature stereotactic platforms. Stereotact Funct Neurosurg 83:25–31

    Article  PubMed  Google Scholar 

  14. Fukaya C, Sumi K, Otaka T, Obuchi T, Kano T, Kobayashi K, Oshima H, Yamamoto T, Katayama Y (2010) Nexframe frameless stereotaxy with multitract microrecording: accuracy evaluated by frame-based stereotactic X-ray. Stereotact Funct Neurosurg 88:163–168

    Article  PubMed  Google Scholar 

  15. Guridi J, Gorospe A, Ramos E, Linazasoro G, Rodriguez MC, Obeso JA (1999) Stereotactic targeting of the globus pallidus internus in Parkinson's disease: imaging versus electrophysiological mapping. Neurosurgery 45:278–287, discussion 287–279

    Article  PubMed  CAS  Google Scholar 

  16. Hamani C, Lozano AM, Moro E, Zadikoff C, Poon YY (2008) Location of active contacts in patients with primary dystonia treated with globus pallidus deep brain stimulation. Neurosurgery 62:217–223

    Article  PubMed  Google Scholar 

  17. Hamid NA, Mitchell RD, Mocroft P, Westby GW, Milner J, Pall H (2005) Targeting the subthalamic nucleus for deep brain stimulation: technical approach and fusion of pre- and postoperative MR images to define accuracy of lead placement. J Neurol Neurosurg Psychiatry 76:409–414

    Article  PubMed  CAS  Google Scholar 

  18. Henderson JM, Tkach J, Phillips M, Baker K, Shellock FG, Rezai AR (2005) Permanent neurological deficit related to magnetic resonance imaging in a patient with implanted deep brain stimulation electrodes for Parkinson's disease: case report. Neurosurgery 57:E1063, discussion E1063

    Article  PubMed  Google Scholar 

  19. Holloway KL, Gaede SE, Starr PA, Rosenow JM, Ramakrishnan V, Henderson JM (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404–413

    Article  PubMed  Google Scholar 

  20. Holtzheimer PE 3rd, Roberts DW, Darcey TM (1999) Magnetic resonance imaging versus computed tomography for target localization in functional stereotactic neurosurgery. Neurosurgery 45:290–297, discussion 297–298

    Article  PubMed  Google Scholar 

  21. Kelman C, Ramakrishnan V, Davies A, Holloway K (2010) Analysis of stereotactic accuracy of the cosman-robert-wells frame and nexframe frameless systems in deep brain stimulation surgery. Stereotact Funct Neurosurg 88:288–295

    Article  PubMed  Google Scholar 

  22. Khan MF, Mewes K, Gross RE, Skrinjar O (2008) Assessment of brain shift related to deep brain stimulation surgery. Stereotact Funct Neurosurg 86:44–53

    Article  PubMed  Google Scholar 

  23. Konrad PE, Neimat JS, Yu H, Kao CC, Remple MS, D'Haese PF, Dawant BM (2011) Customized, miniature rapid-prototype stereotactic frames for use in deep brain stimulator surgery: initial clinical methodology and experience from 263 patients from 2002 to 2008. Stereotact Funct Neurosurg 89:34–41

    Article  PubMed  Google Scholar 

  24. Kramer DR, Halpern CH, Danish SF, Jaggi JL, Baltuch GH (2012) The effect of intraventricular trajectory on brain shift in deep brain stimulation. Stereotact Funct Neurosurg 90:20–24

    Article  PubMed  Google Scholar 

  25. Krause M, Fogel W, Kloss M, Rasche D, Volkmann J, Tronnier V (2004) Pallidal stimulation for dystonia. Neurosurgery 55:1361–1368

    Article  PubMed  Google Scholar 

  26. Laitinen LV, Bergenheim AT, Hariz MI (1992) Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J Neurosurg 76:53–61

    Article  PubMed  CAS  Google Scholar 

  27. Lee JY, Kim JW, Lim YH, Kim C, Kim DG, Jeon BS, Paek SH (2010) Is MRI a reliable tool to locate the electrode after deep brain stimulation surgery? Comparison study of CT and MRI for the localization of electrodes after DBS. Acta Neurochir (Wien) 152:2029–2036

    Article  Google Scholar 

  28. Lumsden DKM, Gimeno H, Tustin K, Baker L, Perides S, Ashkan K, Selway R, Lin J-P (2012) Proportion of life lived with dystonia adversely correlates with response to Deep Brain Stimulation in primary and secondary childhood dystonia. Dev Med Child Neurol (in press)

  29. Martin AJ, Larson PS, Ostrem JL, Keith Sootsman W, Talke P, Weber OM, Levesque N, Myers J, Starr PA (2005) Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med 54:1107–1114

    Article  PubMed  Google Scholar 

  30. O'Gorman RL, Jarosz JM, Samuel M, Clough C, Selway RP, Ashkan K (2009) CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg 87:205–210

    Article  PubMed  Google Scholar 

  31. Pezeshkian P, Desalles AA, Gorgulho A, Behnke E, McArthur D, Bari A (2011) Accuracy of Frame-Based Stereotactic MRI versus Frame-Based Stereotactic Head CT fused with recent MRI for post-implantation DBS lead localization. Neurosurgery

  32. Pinsker MO, Herzog J, Falk D, Volkmann J, Deuschl G, Mehdorn M (2008) Accuracy and distortion of deep brain stimulation electrodes on postoperative MRI and CT. Zentralbl Neurochir 69:144–147

    Article  PubMed  CAS  Google Scholar 

  33. Pinsker MO, Volkmann J, Falk D, Herzog J, Steigerwald F, Deuschl G, Mehdorn HM (2009) Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia. Acta Neurochir (Wien) 151:751–758

    Article  CAS  Google Scholar 

  34. Pollo C, Vingerhoets F, Pralong E, Ghika J, Maeder P, Meuli R, Thiran JP, Villemure JG (2007) Localization of electrodes in the subthalamic nucleus on magnetic resonance imaging. J Neurosurg 106:36–44

    Article  PubMed  Google Scholar 

  35. Rezai AR, Phillips M, Baker KB, Sharan AD, Nyenhuis J, Tkach J, Henderson J, Shellock FG (2004) Neurostimulation system used for deep brain stimulation (DBS): MR safety issues and implications of failing to follow safety recommendations. Invest Radiol 39:300–303

    Article  PubMed  Google Scholar 

  36. Roubertie A, Rivier F, Humbertclaude V, Tuffery S, Cavalier L, Cheminal R, Coubes P, Echenne B (2002) [The varied etiologies of childhood-onset dystonia]. Rev Neurol (Paris) 158:413–424

    CAS  Google Scholar 

  37. Sauner D, Runge M, Poggenborg J, Maarouf M, Sturm V, Treuer H, Hunsche S (2010) Multimodal localization of electrodes in deep brain stimulation: comparison of stereotactic CT and MRI with teleradiography. Stereotact Funct Neurosurg 88:253–258

    Article  PubMed  Google Scholar 

  38. Schrader B, Hamel W, Weinert D, Mehdorn HM (2002) Documentation of electrode localization. Mov Disord 17(Suppl 3):S167–174

    Article  PubMed  Google Scholar 

  39. Shahlaie K, Larson PS, Starr PA (2011) Intraoperative computed tomography for deep brain stimulation surgery: technique and accuracy assessment. Neurosurgery 68:114–124, discussion 124

    Article  PubMed  Google Scholar 

  40. Shin M, Penholate MF, Lefaucheur JP, Gurruchaga JM, Brugieres P, Nguyen JP (2010) Assessing accuracy of the magnetic resonance imaging-computed tomography fusion images to evaluate the electrode positions in subthalamic nucleus after deep-brain stimulation. Neurosurgery 66:1193–1202, discussion 1202

    Article  PubMed  Google Scholar 

  41. Starr PA (2002) Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach. Stereotact Funct Neurosurg 79:118–145

    Article  PubMed  Google Scholar 

  42. Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97:370–387

    Article  PubMed  Google Scholar 

  43. Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112:479–490

    Article  PubMed  Google Scholar 

  44. Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M, Ostrem JL, Marks WJ Jr (2004) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus 17:E4

    Article  PubMed  Google Scholar 

  45. Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M, Ostrem JL, Marks WJ Jr (2006) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg 104:488–501

    Article  PubMed  Google Scholar 

  46. Starr PA, Vitek JL, DeLong M, Bakay RA (1999) Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–313, discussion 313–304

    Article  PubMed  CAS  Google Scholar 

  47. Talairach J, Tournoux P (1993) Referentially orientated cerebral MRI anatomy Atlas of Stereotactic Anatomical Correlations for Gray and White Matter. Thieme Stuttgart

  48. Thani NB, Bala A, Swann GB, Lind CR (2011) Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery 69:207–214, discussion 214

    Article  PubMed  Google Scholar 

  49. Tisch S, Zrinzo L, Limousin P, Bhatia KP, Quinn N, Ashkan K, Hariz M (2007) Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry 78:1314–1319

    Article  PubMed  CAS  Google Scholar 

  50. Vayssiere N, Hemm S, Cif L, Picot MC, Diakonova N, El Fertit H, Frerebeau P, Coubes P (2002) Comparison of atlas- and magnetic resonance imaging-based stereotactic targeting of the globus pallidus internus in the performance of deep brain stimulation for treatment of dystonia. J Neurosurg 96:673–679

    Article  PubMed  Google Scholar 

  51. Vayssiere N, Hemm S, Zanca M, Picot MC, Bonafe A, Cif L, Frerebeau P, Coubes P (2000) Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg 93:784–790

    Article  PubMed  CAS  Google Scholar 

  52. Vayssiere N, van der Gaag N, Cif L, Hemm S, Verdier R, Frerebeau P, Coubes P (2004) Deep brain stimulation for dystonia confirming a somatotopic organization in the globus pallidus internus. J Neurosurg 101:181–188

    Article  PubMed  Google Scholar 

  53. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, Lagrange C, du MS T, Dormont D, Grand S, Blond S, Detante O, Pillon B, Ardouin C, Agid Y, Destee A, Pollak P (2005) Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med 352:459–467

    Article  PubMed  CAS  Google Scholar 

  54. Vidailhet M, Yelnik J, Lagrange C, Fraix V, Grabli D, Thobois S, Burbaud P, Welter ML, Xie-Brustolin J, Braga MC, Ardouin C, Czernecki V, Klinger H, Chabardes S, Seigneuret E, Mertens P, Cuny E, Navarro S, Cornu P, Benabid AL, Le Bas JF, Dormont D, Hermier M, Dujardin K, Blond S, Krystkowiak P, Destee A, Bardinet E, Agid Y, Krack P, Broussolle E, Pollak P (2009) Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: a prospective pilot study. Lancet Neurol 8:709–717

    Article  PubMed  Google Scholar 

  55. Vitek JL, Delong MR, Starr PA, Hariz MI, Metman LV (2011) Intraoperative neurophysiology in DBS for dystonia. Mov Disord 26(Suppl 1):S31–36

    Article  PubMed  Google Scholar 

  56. Yoshida F, Miyagi Y, Morioka T, Hashiguchi K, Murakami N, Matsumoto K, Nagata S, Sasaki T (2008) Assessment of contact location in subthalamic stimulation for Parkinson's disease by co-registration of computed tomography images. Stereotact Funct Neurosurg 86:162–166

    Article  PubMed  Google Scholar 

  57. Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, Hariz MI (2009) Avoiding the ventricle: a simple step to improve accuracy of anatomical targeting during deep brain stimulation. J Neurosurg 110:1283–1290

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Lumsden.

Additional information

Richard Selway and Keyoumars Ashkan have contributed equally to this paper

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumsden, D.E., Ashmore, J., Charles-Edwards, G. et al. Accuracy of stimulating electrode placement in paediatric pallidal deep brain stimulation for primary and secondary dystonia. Acta Neurochir 155, 823–836 (2013). https://doi.org/10.1007/s00701-013-1629-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1629-9

Keywords

Navigation