Skip to main content

Advertisement

Log in

A population-based case–control study on viral infections and vaccinations and subsequent multiple sclerosis risk

  • NEURO-EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Viral infections are probably involved in the pathogenesis of multiple sclerosis (MS). A recent cohort study in the Gothenburg population revealed no change in MS incidence associated with the introduction of the Swedish measles, mumps and rubella vaccination programmes. The aim of the present study was to clarify whether these infections or vaccinations, and two other infections, varicella and infectious mononucleosis, influence MS risk. We performed a population-based case–control study in Gothenburg that included 509 MS cases and 2,067 controls, born 1959–1986. Data on infections and vaccinations were obtained from questionnaires and from child health and school health records. We found no significant associations between measles, mumps, rubella or varicella and MS risk. These results were consistent between the two source materials. Infectious mononucleosis was associated with significantly higher MS risk (odds ratio 2.03, 95% CI 1.52–2.73). Overall, there was no significant association between measles-mumps-rubella (MMR) vaccination and MS risk, while those MMR vaccinated before age ten only were at significantly higher MS risk (odds ratio 4.92, 95% CI 1.97–12.20). Those MMR vaccinated both before and after age ten had intermediate MS risk. Infection with measles, mumps, rubella and varicella did not influence MS risk in contrast to infectious mononucleosis which conferred doubled MS risk. The association with ‘early’ MMR vaccination only was an isolated finding, limited by a small number of subjects and multiple testing. Most likely this was a chance finding. Future studies could investigate it on an a priori basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CI:

Confidence interval

CIS:

Clinically isolated syndrome

CSF:

Cerebrospinal fluid

EBV:

Epstein–Barr virus

MMR:

Measles-mumps-rubella

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

OR:

Odds ratio

References

  1. Dean G, Kurtzke JF. On the risk of multiple sclerosis according to age at immigration to South Africa. Br Med J. 1971;3(5777):725–9.

    Article  PubMed  CAS  Google Scholar 

  2. Kurtzke JF, Beebe GW, Norman JE Jr. Epidemiology of multiple sclerosis in US veterans: III. Migration and the risk of MS. Neurology. 1985;35(5):672–8.

    PubMed  CAS  Google Scholar 

  3. Elian M, Nightingale S, Dean G. Multiple sclerosis among United Kingdom-born children of immigrants from the Indian subcontinent, Africa and the West Indies. J Neurol Neurosurg Psychiatry. 1990;53(10):906–11.

    Article  PubMed  CAS  Google Scholar 

  4. Sullivan CB, Visscher BR, Detels R. Multiple sclerosis and age at exposure to childhood diseases and animals: cases and their friends. Neurology. 1984;34(9):1144–8.

    PubMed  CAS  Google Scholar 

  5. Compston DA, Vakarelis BN, Paul E, McDonald WI, Batchelor JR, Mims CA. Viral infection in patients with multiple sclerosis and HLA-DR matched controls. Brain. 1986;109(Pt 2):325–44.

    Article  PubMed  Google Scholar 

  6. Bachmann S, Kesselring J. Multiple sclerosis and infectious childhood diseases. Neuroepidemiology. 1998;17(3):154–60.

    Article  PubMed  CAS  Google Scholar 

  7. Hernan MA, Zhang SM, Lipworth L, Olek MJ, Ascherio A. Multiple sclerosis and age at infection with common viruses. Epidemiology. 2001;12(3):301–6.

    Article  PubMed  CAS  Google Scholar 

  8. Vandvik B, Norrby E, Nordal HJ. Optic neuritis: local synthesis in the central nervous system of oligoclonal antibodies to measles, mumps, rubella, and herpes simplex viruses. Acta Neurol Scand. 1979;60(4):204–13.

    Article  PubMed  CAS  Google Scholar 

  9. Salmi A, Reunanen M, Ilonen J, Panelius M. Intrathecal antibody synthesis to virus antigens in multiple sclerosis. Clin Exp Immunol. 1983;52(2):241–9.

    PubMed  CAS  Google Scholar 

  10. Bray PF, Luka J, Culp KW, Schlight JP. Antibodies against Epstein–Barr nuclear antigen (EBNA) in multiple sclerosis CSF, and two pentapeptide sequence identities between EBNA and myelin basic protein. Neurology. 1992;42(9):1798–804.

    PubMed  CAS  Google Scholar 

  11. Frederiksen JL, Sindic CJ. Intrathecal synthesis of virus-specific oligoclonal IgG, and of free kappa and free lambda oligoclonal bands in acute monosymptomatic optic neuritis. Comparison with brain MRI. Mult Scler. 1998;4(1):22–6.

    Article  PubMed  CAS  Google Scholar 

  12. Reiber H, Ungefehr S, Jacobi C. The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler. 1998;4(3):111–7.

    PubMed  CAS  Google Scholar 

  13. Rand KH, Houck H, Denslow ND, Heilman KM. Epstein–Barr virus nuclear antigen-1 (EBNA-1) associated oligoclonal bands in patients with multiple sclerosis. J Neurol Sci. 2000;173(1):32–9.

    Article  PubMed  CAS  Google Scholar 

  14. Bednarova J, Stourac P, Adam P. Relevance of immunological variables in neuroborreliosis and multiple sclerosis. Acta Neurol Scand. 2005;112(2):97–102.

    Article  PubMed  CAS  Google Scholar 

  15. Petereit HF, Reske D. Expansion of antibody reactivity in the cerebrospinal fluid of multiple sclerosis patients-follow-up and clinical implications. Cerebrospinal Fluid Res. 2005;2:3.

    Article  PubMed  CAS  Google Scholar 

  16. Owens GP, Bennett JL, Gilden DH, Burgoon MP. The B cell response in multiple sclerosis. Neurol Res. 2006;28(3):236–44.

    Article  PubMed  CAS  Google Scholar 

  17. Poskanzer DC, Sever JL, Sheridan JL, Prenney LB. Multiple sclerosis in the Orkney and Shetland Islands. IV: viral antibody titres and viral infections. J Epidemiol Community Health. 1980;34(4):258–64.

    Article  PubMed  CAS  Google Scholar 

  18. Sundstrom P, Juto P, Wadell G, Hallmans G, Svenningsson A, Nystrom L, et al. An altered immune response to Epstein–Barr virus in multiple sclerosis: a prospective study. Neurology. 2004;62(12):2277–82.

    PubMed  CAS  Google Scholar 

  19. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357(9):851–62.

    Article  PubMed  CAS  Google Scholar 

  20. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993;72(4):551–60.

    Article  PubMed  CAS  Google Scholar 

  21. Bjorvatn B, Skoldenberg B. [Meningitis in mumps and orchitis in Stockholm during 1955–1976—an epidemiological background for a vaccination policy] In Swedish. Lakartidningen. 1978;75(23):2295–8.

    PubMed  CAS  Google Scholar 

  22. Christenson B, Bottiger M. Changes of the immunological patterns against measles, mumps and rubella. A vaccination programme studied 3 to 7 years after the introduction of a two-dose schedule. Vaccine. 1991;9(5):326–9.

    Article  PubMed  CAS  Google Scholar 

  23. Taranger J. Vaccination programme for eradication of measles, mumps, and rubella. Lancet. 1982;1(8277):915–6.

    Article  PubMed  CAS  Google Scholar 

  24. Strom J. Social development and declining incidence of some common epidemic diseases in children. A study of the incidence in different age groups in Stockholm. Acta Paediatr Scand. 1967;56(2):159–63.

    Article  PubMed  CAS  Google Scholar 

  25. Strom J. [On the incidence of common epidemics of infectious diseases in the light of conditions in Stockholm.] In Swedish. Soc Med Tidskr. 1959;36:347–54.

    PubMed  CAS  Google Scholar 

  26. Lundstrom R, Svedmyr A, Hagbard L, Kaijser K. Rubella immunity as related to age and history of overt disease. Acta Paediatr Scand. 1967;56(3):279–85.

    Article  PubMed  CAS  Google Scholar 

  27. Ahlgren C, Oden A, Toren K, Andersen O. Multiple sclerosis incidence in the era of measles-mumps-rubella mass vaccinations. Acta Neurol Scand. 2009;119(5):313–20.

    Article  PubMed  CAS  Google Scholar 

  28. Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13(3):227–31.

    Article  PubMed  CAS  Google Scholar 

  29. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med. 2002;346(3):158–64.

    Article  PubMed  Google Scholar 

  30. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–7.

    Article  PubMed  CAS  Google Scholar 

  31. Italian Multiple Sclerosis Study Group. Migration and infectious diseases in etiology of multiple sclerosis: a case–control study. In: Battaglia M, editor. Multiple sclerosis research : proceedings of the international multiple sclerosis conference: an update on multiple sclerosis (1989) 15–17 Sep 1988. Rome Excerpta Medica; 1989. p. 147–58.

  32. Gronning M, Riise T, Kvale G, Albrektsen G, Midgard R, Nyland H. Infections in childhood and adolescence in multiple sclerosis. A case–control study. Neuroepidemiology. 1993;12(2):61–9.

    Article  PubMed  CAS  Google Scholar 

  33. Bager P, Nielsen NM, Bihrmann K, Frisch M, Hjalgrim H, Wohlfart J, et al. Childhood infections and risk of multiple sclerosis. Brain. 2004;127(Pt 11):2491–7.

    Article  PubMed  Google Scholar 

  34. Zaadstra BM, Chorus AM, van Buuren S, Kalsbeek H, van Noort JM. Selective association of multiple sclerosis with infectious mononucleosis. Mult Scler. 2008;14(3):307–13.

    Article  PubMed  CAS  Google Scholar 

  35. Thacker EL, Mirzaei F, Ascherio A. Infectious mononucleosis and risk for multiple sclerosis: a meta-analysis. Ann Neurol. 2006;59(3):499–503.

    Article  PubMed  Google Scholar 

  36. Nielsen TR, Rostgaard K, Nielsen NM, Koch-Henriksen N, Haahr S, Sorensen PS, et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol. 2007;64(1):72–5.

    Article  PubMed  Google Scholar 

  37. Huseby ES, Sather B, Huseby PG, Goverman J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity. 2001;14(4):471–81.

    Article  PubMed  CAS  Google Scholar 

  38. DeStefano F, Verstraeten T, Jackson LA, Okoro CA, Benson P, Black SB, et al. Vaccinations and risk of central nervous system demyelinating diseases in adults. Arch Neurol. 2003;60(4):504–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor Lars Frisén for generous help in providing records of optic neuritis at the Neuro-ophthalmological Clinic, Sahlgrenska University Hospital; senior consultant Victoria Romanus for providing vaccination data from the Swedish Institute for Infectious Disease Control; Malte Nordqvist for technical assistance; and the Research Foundation of the Multiple Sclerosis Society of Gothenburg, Sweden, and the foundation of Anna-Lisa and Bror Björnsson, Gothenburg, Sweden for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Ahlgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahlgren, C., Torén, K., Odén, A. et al. A population-based case–control study on viral infections and vaccinations and subsequent multiple sclerosis risk. Eur J Epidemiol 24, 541–552 (2009). https://doi.org/10.1007/s10654-009-9367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9367-2

Keywords

Navigation