Skip to main content

Advertisement

Log in

Abstract

‘Gene therapy’ can be defined as the transfer of genetic material into a patient’s cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug (‘suicide gene’) therapy, oncolytic therapy, replacement/ therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Oldfield EH, Ram Z, Culver KW, et al.: Gene therapy for the treatment of brain tumors using intra-tumoral transduction with the thymidine kinase gene and intravenous ganciclovir. Hum Gene Ther 1993, 4:39–69.

    PubMed  CAS  Google Scholar 

  2. Sasaki M, Plate KH: Gene therapy of malignant glioma: Recent advances in experimental and clinical studies. Ann Oncol 1998, 9:1155–1166. An informative and comprehensive review of the studies related to glioma.

    Article  PubMed  CAS  Google Scholar 

  3. Carter BS, Zervas NT, Chiocca EA: Neurogenetic surgery: Current limitations and the promise of gene- and virus-based therapies. Clin Neurosurg 1999, 45:226–246. A detailed account of much of the development of gene therapy for brain tumors.

    PubMed  CAS  Google Scholar 

  4. Ram Z, Culver KW, Oshiro EM, et al.: Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 1997, 3:1354–1361.

    Article  PubMed  CAS  Google Scholar 

  5. Roth JA, Cristiano RJ: Gene therapy for cancer: What have we done and where are we going? J Natl Cancer Inst 1997, 89:21–39.

    Article  PubMed  CAS  Google Scholar 

  6. Romano G, Micheli P, Pacilio C, Giordano A: Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000, 18:19–39. One of the only reviews giving a comprehensive look at gene therapy clinical trials. This review article has the most recent information of all other review articles.

    Article  PubMed  CAS  Google Scholar 

  7. Yu JS, Burwick JA, Dranoff G, Breakefield XO: Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 1997, 8:1065–1072.

    PubMed  CAS  Google Scholar 

  8. Ram Z, Walbridge S, Oshiro EM, et al.: Intrathecal gene therapy for malignant leptomeningeal neoplasia. Cancer Res 1994, 54:2141–2145.

    PubMed  CAS  Google Scholar 

  9. Rosenberg SA, Aebersold P, Cornetta K, et al.: Gene transfer into humans: immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990, 323:570–578.

    Article  PubMed  CAS  Google Scholar 

  10. Maria BL, Medina CD, Hoang KBN, Phillips MI: Gene therapy for neurologic disease: benchtop discoveries to bedside applications. 2. The bedside. J Child Neurol 1997, 12:77–84.

    PubMed  CAS  Google Scholar 

  11. Alavi JB, Eck SL: Gene therapy for malignant gliomas. Hemat Oncol Clin N Am 1998, 12:617–629.

    Article  CAS  Google Scholar 

  12. Engelhard HH, Groothuis DG: The blood-brain barrier: structure, function and response to neoplasia. In The Gliomas. Edited by Berger M, Wilson C. Philadelphia: WB Saunders; 1998:115–121.

    Google Scholar 

  13. Verma IM, Somia N: Gene therapy: promises, problems and prospects: Nature 1997, 389:239–242.

    Article  PubMed  CAS  Google Scholar 

  14. Felgner PL: Nonviral strategies for gene therapy. Sci Am 1997, 276:102–106.

    PubMed  CAS  Google Scholar 

  15. Weihl C, Macdonald RL, Stoodley M, et al.: Gene therapy for cerebrovascular disease. Neurosurg 1999, 44:239–252. Complete, thorough, and up-to-date review of gene therapy for cerebrovascular disease. This is one of the most comprehensive reviews available.

    Article  CAS  Google Scholar 

  16. Forbes SJ, Hodgson HJ: Gene therapy in gastroenterology and hepatology. Aliment Pharmacol Ther 1997, 11:823–836.

    Article  PubMed  CAS  Google Scholar 

  17. Shetty K, Wu GY, Wu CH: Gene therapy of hepatic diseases: prospects for the new millennium. Gut 2000, 46:136–139. A thorough, up-to-date review of gene therapy for hepatic disease with a good discussion about vectors.

    Article  PubMed  CAS  Google Scholar 

  18. Boviatsis EJ, Park JS, Sena-Esteves M, et al.: Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains and intact thymidine kinase gene. Cancer Res 1994, 54:5745–5751.

    PubMed  CAS  Google Scholar 

  19. Overwijk WW, Theoret MR, Restifo NP: The future of interleukin-2: enhancing therapeutic anticancer vaccines. Cancer J Sci Am 2000, 6(suppl)1:S76-S80.

    PubMed  Google Scholar 

  20. Fueyo J, Gomez-Manzano C, Yung WKA, Kyritsis A: Targeting in gene therapy for gliomas. Arch Neurol 1999, 56:445–448.

    Article  PubMed  CAS  Google Scholar 

  21. Wildner O: In situ use of suicide genes for therapy of brain tumours. Ann Med 1999, 31:421–429.

    Article  PubMed  CAS  Google Scholar 

  22. Latchman, DS: Herpessimplex virus vectors for gene therapy in Parkinson’s disease and other diseases of the nervous system. J R Soc Med 1999, 92:566–570. Excellent review article on CNS gene transfer therapies. This article describes in detail the treatment of Parkinson’s disease using the gene therapy approach.

    PubMed  CAS  Google Scholar 

  23. Yoon S, Nakamura H, Carroll NM, et al.: An oncolytic herpes simplex virus type 1 selectively destroys diffuse liver metastases from colon carcinoma. FASEB J 2000, 14:301–311.

    PubMed  CAS  Google Scholar 

  24. Roitt I, Brostoff J, Male D: Immunology. Boston: Mosby; 1996:8.1–8.14, 20.1.

    Google Scholar 

  25. Hanania EG, Kavanagh J, Hortobagyi G, et al.: Recent advances in the application of gene therapy to human disease. Am J Med 1995, 99:537–552.

    Article  PubMed  CAS  Google Scholar 

  26. Evans TR, Kaye SB: Vaccine therapy for cancer: fact or fiction? QJM 1999, 92:299–307.

    Article  PubMed  CAS  Google Scholar 

  27. Ishida H, Kaneda Y, Yamane S, et al.: Allogeneic class I major histocompatibility complex gene transfer in murine neuroblastoma in vivo. Anticancer Res 1999, 19:5367–5373.

    PubMed  CAS  Google Scholar 

  28. Wollenberg B, Lang S, Friess T, et al.: Induction of antitumor immune response in the mouse model after vaccination with B7.1 expressing tumor cells. Laryngorhinootologie 1999, 78:36–40.

    PubMed  CAS  Google Scholar 

  29. Gilligan MG, Knox P, Weedon S et al.: Adenoviral delivery of B7-1 (CD80) increases the immunogenicity of human ovarian and cervical carcinoma cells. Gene Ther 1998, 5:965–974.

    Article  PubMed  CAS  Google Scholar 

  30. Joki T, Kikuchi T, Akasaki Y, et al.: Induction of effective antitumor immunity in a mouse brain tumor model using B7-1 (CD80) and intercellular adhesive molecule 1 (ICAM-1; CD54) transfection and recombinant interleukin 12. Int J Cancer 1999, 82:714–720.

    Article  PubMed  CAS  Google Scholar 

  31. Stopeck AT, Hersh EM, Akporiaye ET, et al.: Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. J Clin Oncol 1997, 15:341–349.

    PubMed  CAS  Google Scholar 

  32. Okada H, Giezeman-Smits KM, Tahara H, et al.: Effective cytokine gene therapy against an intracranial glioma using a retrovirally transduced IL-4 plus HSVtk tumor vaccine. Gene Ther 1999, 6:219–226.

    Article  PubMed  CAS  Google Scholar 

  33. Sobol RE, Shawler DL, Carson C, et al.: Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a Phase I study. Clin Cancer Res 1999, 5:2359–2365.

    PubMed  CAS  Google Scholar 

  34. Galanis E, Hersh EM, Stopeck AT et al.: Immunotherapy of advanced malignancy by direct gene transfer of an interleukin-2 DNA/DMRIE/DOPE lipid complex: phase I/II experience. J Clin Oncol 1999, 17:3313–3323.

    PubMed  CAS  Google Scholar 

  35. Herrlinger U, Kramm CM, Johnston KM, et al.: Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 1997, 4:345–352.

    PubMed  CAS  Google Scholar 

  36. Puumalainen AM, Vapalahti M, Yia-Herttuala S: Gene therapy for malignant glioma patients. In Gene Therapy of Cancer. Edited by Walden P. New York: Plenum; 1998:505–509.

    Google Scholar 

  37. Soubrane C, Mouawad R, Rixe O, et al.: Direct gene transfer of a plasmid carrying the herpes simplex virus-thymidine kinase gene (HSV-TK) in transplanted murine melanoma: in vivo study. Eur J Cancer 1996, 32A:691–695.

    Article  PubMed  CAS  Google Scholar 

  38. Namba H, Tagawa M, Iwadate Y, et al.: Bystander effect-mediated therapy of experimental brain tumor by genetically engineered tumor cells. Hum Gene Ther 1998, 9:3–4.

    Google Scholar 

  39. Zlokovic BV, Apuzzo ML: Cellular and molecular neurosurgery: Pathways from concept to reality—part I: target disorders and concept approaches to gene therapy of the central nervous system. Neurosurg 1997, 40:789–803.

    Article  CAS  Google Scholar 

  40. Culver KW, Ram Z, Wallbridge S, et al.: In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992, 256:1550–1552.

    Article  PubMed  CAS  Google Scholar 

  41. DiMaio JM, Clary BM, Via DF, et al.: Directed enzyme pro-drug gene therapy for pancreatic cancer in vivo. Surgery 1994, 116:205–213.

    PubMed  CAS  Google Scholar 

  42. Smythe WR, Hwang HC, Amin KM, et al.: Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSV-TK) gene to thoracic neoplasms: an effective in vitro drug sensitization system. Cancer Res 1994, 54:2055–2059.

    PubMed  CAS  Google Scholar 

  43. Shand N, Weber F, Mariani L, et al.: A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. Hum Gene Ther 1999, 10:2325–2335.

    Article  PubMed  CAS  Google Scholar 

  44. Klatzmann D, Valery CA, Bensimon G, et al.: A phase I/II study of herpes simplex virus type I thymidine kinase ‘suicide’ gene therapy for recurrent glioblastoma. Hum Gene Ther 1998, 9:2595–2604.

    Article  PubMed  CAS  Google Scholar 

  45. Packer RJ, Raffel C, Villablanca JG, et al.: Treatment of progressive or recurrent pediatric malignant supratentorial brain tumors with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclorvir administration. J Neurosurg 2000, 92:249–254.

    Article  PubMed  CAS  Google Scholar 

  46. Kramm CM, Chase M, Herrlinger U, et al.: Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum Gene Ther 1997, 3:1354–1361.

    Google Scholar 

  47. McKie EA, Graham DI, Brown SM: Selective astrocytic transgene expression in vitro and in vivo from the GFAP promoter in a HSV RL1 null mutant vector—potential glioblastoma targeting. Gene Ther 1998, 5:440–450. This paper describes a novel strategy for use against glioma cells.

    Article  PubMed  CAS  Google Scholar 

  48. Mineta T, Rabkin SD, Yazaki T, et al.: Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995, 9:938–943.

    Article  Google Scholar 

  49. Walker JR, McGeagh KG, Sundaresan P, et al.: Local and systemic therapy of human prostate adenocarcinoma with the conditionally replicating herpes simplex virus vector G207. Hum Gene Ther 1999, 10:2237–2243.

    Article  PubMed  CAS  Google Scholar 

  50. Lang FF, Yung WKA, Sawaya R, Tofilon PJ: Adenovirus-mediated p53 gene therapy for human gliomas. Neurosurg 1999, 45:1093–1104. Excellent article on the adenoviral p53 gene replacement strategy.

    Article  CAS  Google Scholar 

  51. Wick W, Furnari FB, Naumann U, et al.: PTEN gene transfer in human malignant glioma: sensitization to irradiation and CD95L-induced apoptosis. Oncogene 1999, 18:3936–3943.

    Article  PubMed  CAS  Google Scholar 

  52. Fulci G, Ishii N, Van Meir EG: p53 and brain tumors: From gene mutations to gene therapy. Brain Pathol 1998, 8:599–613.

    Article  PubMed  CAS  Google Scholar 

  53. Gomez-Manzano C, Fueyo J, Kyritsis AP, et al.: Adenovirusmediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 1996, 56:694–699.

    PubMed  CAS  Google Scholar 

  54. Badie B, Drazan KE, Kramar MH, et al.: Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol Res 1995, 17:209–216.

    PubMed  CAS  Google Scholar 

  55. Riley DJ, Nikitin AY, Lee WH: Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumorsin Rb ± mice. Nat Med 1996, 2:1316–1321.

    Article  PubMed  CAS  Google Scholar 

  56. Xu HJ, Zhou Y, Seigne J, et al.: Enhanced tumor suppressor gene therapy via replication-deficient adenovirus vectors expressing an N-terminal truncated retinoblastoma protein. Cancer Res 1996, 56:2245–2249.

    PubMed  CAS  Google Scholar 

  57. Tanaka T, Manome Y, Wen P, et al.: Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nat Med 1997, 3:437–442.

    Article  PubMed  CAS  Google Scholar 

  58. Kokunai T, Iguchi H, Tamaki N: Differentiation and growth inhibition of glioma cells induced by transfer of trk A proto-oncogene. J Neurooncol 1999, 42:23–34. An interesting recent report of gene therapy used to induce a ‘beneficial’ protein.

    Article  PubMed  CAS  Google Scholar 

  59. Zamecnik PC, Stephenson ML: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 1978, 75:285.

    Article  PubMed  Google Scholar 

  60. Engelhard HH: Antisense oligodeoxynucleotide technology: potential use for the treatment of malignant brain tumors. Cancer Control 1998, 5:163–170.

    PubMed  Google Scholar 

  61. Ho PTC, Parkinson DR: Antisense oligonucleotides as therapeutics for malignant diseases. Semin Oncol 1997, 24:187–202.

    PubMed  CAS  Google Scholar 

  62. Mohan PM, Chintala SK, Mohanam S, et al.: Adenovirus-mediated delivery of antisense gene to urokinases-type plasiminogen activator receptor suppresses glioma invasion and tumor growth. Cancer Res 1999, 59:3369–3373. This article describes virally induced antisense therapy against a receptor.

    PubMed  CAS  Google Scholar 

  63. Sasaki M, Wizigmann-Voos S, Risau W, Plate KH: Retrovirus producer cells encoding antisense VEGF prolong survival of rats with intracranial GS9L gliomas. Int J Dev Neurosci 1999, 17:579–591.

    Article  PubMed  CAS  Google Scholar 

  64. Fakhrai H, Dorigo O, Shawler DL, et al.: Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 1996, 93:2909–2914.

    Article  PubMed  CAS  Google Scholar 

  65. Hall WA, Flores EP, Low WC: Antisense oligonucleotides for central nervous system tumors. Neurosurg 1996, 38:376–382.

    Article  CAS  Google Scholar 

  66. Warzocha K, Wotowiec D: Antisense strategy: biological utility and prospects in the treatment of hematological malignancies. Leuk Lymphoma 1997, 24:267–281.

    PubMed  CAS  Google Scholar 

  67. Askari FK, McDonnell WM: Molecular medicine: antisenseoligonucleotide therapy. N Engl J Med 1996, 334:316–318.

    Article  PubMed  CAS  Google Scholar 

  68. Engelhard HH, Narang C, Homer R, et al.: Urokinase antisense oligodeoxynucleotides as a novel therapeutic agent for malignant glioma: in vitro and in vivo studies of uptake, effects and toxicity. Biochem Biophys Res Commun 1996, 227:400–405.

    Article  PubMed  CAS  Google Scholar 

  69. Whitesell L, Geselowitz D, Chavany C, et al.: Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc Natl Acad Sci U S A 1993, 90:4665–4669.

    Article  PubMed  CAS  Google Scholar 

  70. Mizuno M, Yoshida J, Colosi P, Kurtzman G: Adeno-associated virus vector containing the herpes simplex virus thymidine kinase gene causes complete regression of intracerebrally implanted human gliomas in mice, in conjunction with ganciclovir administration. Jpn J Cancer Res 1998, 89:76–80.

    PubMed  CAS  Google Scholar 

  71. Dewey RA, Morrissey G, Cowsil CM, et al.: Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med 1999, 5:1256–1263.

    Article  PubMed  CAS  Google Scholar 

  72. Amado RG, Chen ISY: Lentiviral vectors: the promise of gene therapy within reach? Science 1999, 285:674–676.

    Article  PubMed  CAS  Google Scholar 

  73. Wildner O, Blaese RM, Morris JC: Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res 1999, 59:410–413.

    PubMed  CAS  Google Scholar 

  74. Palu G, Cavaggioni A, Calvi P, et al.: Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans. Gene Ther 1999, 6:330–337.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, K., Engelhard, H.H. Gene therapy for brain tumors. Curr Oncol Rep 2, 463–472 (2000). https://doi.org/10.1007/s11912-000-0067-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-000-0067-z

Keywords

Navigation