Skip to main content

Advertisement

Log in

Spinocerebellar Ataxia: A Rational Approach to Aetiological Diagnosis

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The objective of this study was to determine the main causal diagnosis for spinocerebellar ataxia (SCA) in a geographically defined population of ataxia patients and to suggest a rational basis for choosing appropriate clinical and paraclinical assessments. Given the many aetiologies responsible for SCA, the diagnosis requires the performance of a wide range of paraclinical analyses. At present, there is no consensus on the diagnostic value of these examinations. Furthermore, most of the currently available data gathered by reference centres suffer from selection bias. We performed a prospective study of consecutive cerebellar ataxia patients referred by their family doctors to a university hospital in northern France. Multiple system atrophy and obvious secondary causes (e.g. alcoholism) were excluded by our screening process. The patient’s family members were also assessed. Of the 204 patients examined, 47% presented autosomal dominant ataxia and 33% presented sporadic ataxia. Autosomal recessive ataxia was rare (8%) and age at onset was significantly earlier for this condition than for other forms. An aetiological diagnosis was established in 44% of patients, a plausible hypothesis could be formed in 13% of cases, and no diagnosis was made in the remaining 44%. Established diagnoses included SCA1, SCA2, SCA3 and SCA6 mutations, Friedreich’s ataxia, and one rare case of ataxia associated with anti-glutamic acid decarboxylase antibodies. Two families presented ataxia associated with autosomal, dominant, optic atrophy with an OPA1 mutation. Mitochondrial diseases were suspected in about 10% of patients. In SCA, reliable determination of the transmission mode always requires the assessment of family members. Mitochondrial disease may be an emerging cause of ataxia. Metabolite assays appeared to be of little value when systematically performed and so should be prescribed only by metabolic disorder specialists in selected cases of sporadic and recessive ataxia. Ophthalmological examination was the most helpful physiological assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abele M, Bürk K, Schöls L, Schwartz S, Besenthal I, Dichgans J, et al. The aetiology of sporadic adult-onset ataxia. Brain. 2002;125(Pt 5):961–8.

    Article  PubMed  CAS  Google Scholar 

  2. Amati-Bonneau P, Valentino ML, Reynier P, Gallardo ME, Bornstein B, Boissière A, et al. OPA1 mutations induce mitochondrial DNA instability and optic atrophy ‘plus’ phenotypes. Brain. 2008;131(Pt 2):338–51.

    Article  PubMed  Google Scholar 

  3. Aure K, Lombes A. Approche diagnostique des maladies mitochondriales à présentation neurologique. Rev Neurol (Paris). 2007;163(2):254–63 (Review).

    Article  PubMed  CAS  Google Scholar 

  4. Bushara KO. Neurologic presentation of celiac disease. Gastroenterology. 2005;128(4 Suppl 1):S92–7 (Review).

    Article  PubMed  Google Scholar 

  5. Bushara KO, Nance M, Gomez CM. Antigliadin antibodies in Huntington’s disease. Neurology. 2004;62(1):132–3.

    PubMed  Google Scholar 

  6. Cohen Aubart F, Sedel F, Papo T. Cystathionine betasynthase and MTHFR deficiencies in adults. Rev Neurol (Paris). 2007;163(10):904–10.

    Article  PubMed  CAS  Google Scholar 

  7. Dejerine JJ, Thomas A. L’atrophie olivo-ponto-cérébelleuse. Nouvelle Iconographie de la Salpêtrière, Paris, 1900;13:330–370, 1912;25:223–250.

  8. Devos D, Schraen-Maschke S, Vuillaume I, Dujardin K, Naze P, Willoteaux C, et al. Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology. 2001;56(2):234–8.

    PubMed  CAS  Google Scholar 

  9. Di Donato S, Gellera C, Mariotti C. The complex clinical and genetic classification of inherited ataxias. II. Autosomal recessive ataxias. Neurol Sci. 2001;22(3):219–28 (Review).

    Article  PubMed  Google Scholar 

  10. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9(9):885–94.

    Article  PubMed  CAS  Google Scholar 

  11. Fogel BL, Perlman S. Clinical features and molecular genetics of autosomal recessive cerebellar ataxias. Lancet Neurol. 2007;6(3):245–57 (Review).

    Article  PubMed  CAS  Google Scholar 

  12. Fortuna F, Barboni P, Liguori R, Valentino ML, Savini G, Gellera C, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain. 2009;132(Pt1):116–23.

    PubMed  Google Scholar 

  13. Friedreich N. Uber degenerative Atrophie der spinalen hinterstränge. Virchows Arch Pathol Anat. 1863;26:391–419.

    Article  Google Scholar 

  14. Gago MF, Rosas MJ, Guimaraes J, Ferreira M, Vilarinho L, Castro L, et al. SANDO: two novel mutations in POLG1 gene. Neuromuscul Disord. 2006;16(8):507–9.

    Article  PubMed  Google Scholar 

  15. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6.

    Article  PubMed  CAS  Google Scholar 

  16. Gomez CM, Subramony SH. Dominantly inherited ataxias. Semin Pediatr Neurol. 2003;10(3):210–22 (Review).

    Article  PubMed  Google Scholar 

  17. Hadjivassiliou M, Grunewald RA, Chattopadhyay AK, Davies-Jones GA, Gibson A, Jarratt JA, et al. Clinical, radiological, neurophysiological, and neuropathological characteristics of gluten ataxia. Lancet. 1998;352(9140):1582–5.

    Article  PubMed  CAS  Google Scholar 

  18. Hakonen AH, Davidzon G, Salemi R, Bindoff LA, Van Goethem G, Dimauro S, et al. Abundance of the POLG disease mutations in Europe, Australia, New Zealand, and the United States explained by single ancient European founders. Eur J Hum Genet. 2007;15(7):779–83.

    Article  PubMed  CAS  Google Scholar 

  19. Hanein S, Martin E, Boukhris A, Byrne P, Goizet C, Hamri A, et al. Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet. 2008;82(4):992–1002.

    Article  PubMed  CAS  Google Scholar 

  20. Harding AE. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. Brain. 1982;105:1–28.

    Article  PubMed  CAS  Google Scholar 

  21. Holmes G. An attempt to classify cerebellar disease, with a note on Marie’s hereditary cerebellaar ataxia. Brain. 1907;30:547–67.

    Google Scholar 

  22. Honnorat J, Saiz A, Giometto B, Vincent A, Brieva L, de Andres C, et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol. 2001;58(2):225–30.

    Article  PubMed  CAS  Google Scholar 

  23. Infante J, Combarros O, Volpini V, Corral J, Llorca J, Berciano J. Autosomal dominant cerebellar ataxias in Spain: molecular and clinical correlations, prevalence estimation and survival analysis. Acta Neurol Scand. 2005;111(6):391–9.

    Article  PubMed  CAS  Google Scholar 

  24. Jiang H, Tang BS, Xu B, Zhao GH, Shen L, Tang JG, et al. Frequency analysis of autosomal dominant spinocerebellar ataxias in mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Chin Med J (Engl). 2005;118(10):837–43.

    CAS  Google Scholar 

  25. Klockgether T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum. 2008;7(2):101–5.

    Article  PubMed  CAS  Google Scholar 

  26. Klockgether T, Ludtke R, Kramer B, Abele M, Burk K, Schöls L, et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain. 1998;121(Pt 4):589–600.

    Article  PubMed  Google Scholar 

  27. Lamperti C, Naini A, Hirano M, De Vivo DC, Bertini E, Servidei S, et al. Cerebellar ataxia and coenzyme Q10 deficiency. Neurology. 2003;60(7):1206–8.

    PubMed  CAS  Google Scholar 

  28. Lee WY, Jin DK, Oh MR, Lee JE, Song SM, Lee EA, et al. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch Neurol. 2003;60(6):858–63.

    Article  PubMed  Google Scholar 

  29. Lorenz B, Preising M. Usher syndrome. Orphanet Encyclopedia. March 2004.

  30. Marzouki N, Benomar A, Yahyaoui M, Birouk N, Elouazzani M, Chkili T, et al. Vitamin E deficiency ataxia with (744 del A) mutation on alpha-TTP gene: genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet. 2005;48(1):21–8.

    Article  PubMed  Google Scholar 

  31. Orlacchio A, Kawarai T, Totaro A, Errico A, Errico A, St George-Hyslop PH, et al. Hereditary spastic paraplegia: clinical genetic study of 15 families. Arch Neurol. 2004;61(6):849–55.

    Article  PubMed  Google Scholar 

  32. Park SB, Ma KT, Kook KH, Lee SY. Kearns–Sayre syndrome—3 case reports and review of clinical feature. Yonsei Med J. 2004;45(4):727–35.

    PubMed  Google Scholar 

  33. Pierre Marie. Sur l’hérédo-ataxie cérébelleuse. Semaine Médicale, Paris, 1893;13:444.

  34. Schöls L, Szymanski S, Peters S, Przuntek H, Epplen JT, Hardt C, et al. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet. 2000;107(2):132–7.

    Article  PubMed  Google Scholar 

  35. Sedel F, Lyon-Caen O, Saudubray JM. Treatable hereditary neuro-metabolic diseases. Rev Neurol (Paris). 2007;163(10):884–96.

    Article  PubMed  CAS  Google Scholar 

  36. Tzoulis C, Engelsen BA, Telstad W, Aasly J, Zeviani M, Winterthun S, et al. The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain. 2006;129(Pt 7):1685–92.

    Article  PubMed  Google Scholar 

  37. Van den Warrenburg BP, Sinke RJ, Kremer B. Recent advances in hereditary spinocerebellar ataxias. J Neuropathol Exp Neurol. 2005;64(3):171–80 (Review).

    PubMed  Google Scholar 

  38. Zouari M, Feki M, Ben Hamida C, Larnaout A, Turki I, Belal S, et al. Electrophysiology and nerve biopsy: comparative study in Friedreich’s ataxia and Friedreich’s ataxia phenotype with vitamin E deficiency. Neuromuscul Disord. 1998;8(6):416–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

There was no sponsorship for this study. The authors report no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Degardin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degardin, A., Dobbelaere, D., Vuillaume, I. et al. Spinocerebellar Ataxia: A Rational Approach to Aetiological Diagnosis. Cerebellum 11, 289–299 (2012). https://doi.org/10.1007/s12311-011-0310-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0310-1

Keywords

Navigation