Questions regarding the sequential neural generator theory of the somatosensory evoked potential raised by digital filteringQuestions concernant la théorie du générateur nerveux séquentiel du potentiel évoqué somatosensoriel, soulevées par le filtrage digital

https://doi.org/10.1016/0168-5597(84)90040-6Get rights and content

Abstract

Digital bandpass filtering (300–2500 Hz) designed for zero phase shift was applied to somatosensory evoked potentials recorded with cephalic bipolar montages. Four consistent negative and corresponding positive peaks with latencies of about 16, 18, 19, and 20 msec were elicited with median nerve stimulation. Peroneal nerve stimulation also elicited 4 reproducible negative-positive peaks having latencies of about 24, 26, 28, and 30 msec. Interpeak latencies measured 1.3 ± 0.2 msec and 1.8 ± 0.25 msec for median and peroneal elicited SEPs respectively. Becaise cephalic bipolar recordings cancel most far-field potentials, multiple generators cannot account for all the additional components seen. It is hypothesized that some of the high frequency components recorded are due to activity in recurrent intrathalamic neuronal networks.

Résumé

Un filtre digital passe-bande (300–2500 Hz) conçu pour une différence de phase nulle a été appliqué aux potentiels évoqués somatosensoriels enregistrés en montages bipolaires céphaliques. Quatre pics négatifs reproductibles et les pics positifs correspondants, d'une latence de 16, 18, 19 et 20 msec ont été produits par stimulation du nerf médian. La stimulation du nerf péronier a également produit régulièrement 4 pics négatifs-positifs à des latences d'environ 24, 26, 28 et 30 msec. Les latences interpics étaient de 1,3 ± 0,2 msec et 1,8 ± 0,25 msec pour les PES produits par stimulation médiane et péronière respectivement. Les enregistrements céphaliques bipolaires annulant la plupart des potentiels de champs lointains, l'existence de générateurs multiples ne peut pas rendre compte de toutes les composantes additionnelles observées. L'hypothèse est faite que certaines des composantes à fréquence élevée enregistrées sont dues à l'activité de réseaux neuronaux récurrents intrathalamiques.

References (37)

  • F. Mauguière et al.

    Neural generators of N18 and P14 far-field somatosensory evoked potentials studied in patients with lesions of thalamus or thalamocortical radiations

    Electroenceph. clin. Neurophysiol.

    (1983)
  • T. Nakanishi et al.

    Origins of short latency somatosensory evoked potentials to median nerve stimulation

    Electroenceph. clin. Neurophysiol.

    (1983)
  • P.M. Rossini et al.

    Nervous impulse propagation along peripheral and central fibers in patients with chronic renal failure

    Electroenceph. clin. Neurophysiol.

    (1983)
  • T. Tsumoto et al.

    Analysis of somatosensory evoked potentials to lateral popliteal nerve stimulation in man

    Electroenceph. clin. Neurophysiol.

    (1972)
  • G.A. Vas et al.

    Scalp-recorded short latency cortical and subcortical somatosensory evoked potentials to peroneal nerve stimulation

    Electroenceph. clin. Neurophysiol.

    (1981)
  • D.G. Wastell

    The application of low-pass linear filters to evoked potential data: filtering without phase distortion

    Electroenceph. clin. Neurophysiol.

    (1979)
  • M. Abbruzzese et al.

    New subcortical components of the cerebral somatosensory evoked potential in man

    Acta neurol. scand.

    (1978)
  • G. Celesia

    Somatosensory evoked potentials recorded directly from human thalamus and SMI cortical area

    Arch. Neurol. (Chic.)

    (1979)
  • Cited by (97)

    • Non-invasive single-trial detection of variable population spike responses in human somatosensory evoked potentials

      2016, Clinical Neurophysiology
      Citation Excerpt :

      In particular, the clinically established low-frequency EEG (<100 Hz) mainly reflects cortical postsynaptic potentials, i.e., the input of neuronal computation (Okada et al., 1997). In contrast, somatosensory evoked potentials (SEPs) contain an additional oscillatory high-frequency EEG burst (≈600 Hz), denoted here as ‘σ-burst’, which is concomitant with the first cortical low-frequency component (the post-synaptically generated ‘N20’ for median nerve stimulation) and can be isolated by high-pass filtering above 400 Hz (Cracco and Cracco, 1976; Eisen et al., 1984). Simultaneous macroscopic subdural SEP and microscopic cortical single-cell recordings in behaving non-human primates revealed that this σ-burst is synchronous (Baker et al., 2003) and co-variable (Telenczuk et al., 2011) with cortical single-cell spike bursts.

    • Non-invasive single-trial EEG detection of evoked human neocortical population spikes

      2015, NeuroImage
      Citation Excerpt :

      Specifically, we detect high-frequency oscillations (≈ 600 Hz) in human somatosensory evoked potentials, here labeled as ‘σ-bursts’ (Curio et al., 1994). First noted as ‘ripples’ riding on the N20 component of averaged somatosensory evoked potentials (SEPs) elicited by median nerve stimulation (Cracco and Cracco, 1976), the σ-burst was isolated by high-pass filtering above 400 Hz (Eisen et al., 1984) and shown to be composed of at least three components (Klostermann et al., 1999) generated thalamically (Klostermann et al., 2000; Ritter et al., 2008; Fedele et al., 2012) and by cortical neurons in Brodmann areas 3b and 1 (Curio et al., 1994; Ritter et al., 2008). Invasive microelectrode recordings in non-human primates revealed that epidurally recorded macroscopic σ-bursts coincide with bursts of action potentials fired by single cells in the primary somatosensory cortex (Baker et al., 2003).

    View all citing articles on Scopus

    This work was supported in part by a grant from the Multiple Sclerosis Society of Canada and NSERC Grant No. A4924.

    View full text