Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responsesComment réaliser l'imagerie digitale des potentiels évoqués chez l'homme

https://doi.org/10.1016/0168-5597(87)90065-7Get rights and content

Abstract

Bit-mapped color imaging of scalp potential fields evoked by sensory stimulation in humans disclosed significant features not indentified by mere inspection of multichannel traces. Methodological problems are considered in detail for early cortical SEPs which include several components with sharp rise times occurring at spatially distinct scalp locations. A manageable yet efficient imaging system requires recording electrodes in adequate number and scalp locations, bandpass fidelity to resolve slow and fast components, consistency of bioelectric input data, optimal interpolation and mapping algorithms, and consistent color scaling. Critical steps in these procedures were investigated in conjunction with new evidence on the scalp topography and neural generators of the N20, P20, P22, P27 and N30 SEP components. It is concluded that N20-P20 reflect a tangential equivalent dipole in parietal area 3b while P22 reflects a radial equivalent dipole in motor area 4.

Résumé

L'imagerie digitale des champs de potentiels cérébraux évoqués par stimulation sensorielle chez l'homme met en évidence des faits qui ne sont pas évidents lors de l'observation des tracés multicanaux. On considère en détail les problèmes de méthodes pour les potentiels somesthésiques qui comportent beaucoup de composantes rapides à localisations distinctes.

Un système d'imagerie efficace nécessite un nombre suffisant d'électrodes en des endroits critiques du cuir chevelu, une bande passante résolvant les composantes rapides, des logiciels et des échelles de couleurs appropriés. Les points critiques de ces méthodes ont été analysés et discutiés.

References (68)

  • J.E. Desmedt et al.

    Wave form and neural mechanism of the decision P350 elicited without prestimulus CNV or readiness potential in random sequences of nearthreshold auditory clicks and finger stimuli

    Electroenceph. clin. Neurophysiol.

    (1979)
  • J.E. Desmedt et al.

    Bit-mapped color imaging of potential fields generated by propagated and segmental subcortical components of somatosensory evoked potentials in man

    Electroenceph. clin. Neurophysiol.

    (1984)
  • J.E. Desmedt et al.

    The system bandpass required to avoid distortion of early components when averaging somatosensory evoked potentials

    Electroenceph. clin. Neurophysiol.

    (1974)
  • J.E. Desmedt et al.

    The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest signs of sensory processing in man

    Electroenceph. clin. Neurophysiol.

    (1983)
  • M.H. Giard et al.

    Sequential color mapping system of brain potentials

    Comput. Meth. Progr. Biomed.

    (1985)
  • W.R. Goff et al.

    Distribution of somatosensory evoked responses in normal man

    Electroenceph. clin. Neurophysiol.

    (1962)
  • D.W. King et al.

    Short-latency somatosensory potentials in humans

    Electroenceph. clin. Neurophysiol.

    (1979)
  • M. Kutas et al.

    Reading between the lines: event-related brain potentials during natural sentence processing

    Brain Lang.

    (1980)
  • D. Lehmann et al.

    Reference-free identification of components of checkerboard-evoked multichannel potential fields

    Electroenceph. clin. Neurophysiol.

    (1980)
  • P.J. Maccabee et al.

    Short-latency somatosensory evoked potentials to median nerve stimulation: effect of low frequency filter

    Electroenceph. clin. Neurophysiol.

    (1983)
  • F. Mauguière et al.

    Neural generators of N18 and P14 far-field somatosensory evoked potentials: patients with lesion of thalamus or thalamo-cortical radiations

    Electroenceph. clin. Neurophysiol.

    (1983)
  • M.R. Nuwer

    A comparison of the analyses of EEG and evoked potentials using colored bars in place of colored heads

    Electroenceph. clin. Neurophysiol.

    (1985)
  • R.A. Ragot et al.

    EEG field mapping

    Electroenceph. clin. Neurophysiol.

    (1978)
  • G.W. Thickbroom et al.

    Spatio-temporal mapping of evoked cerebral activity

    Electroenceph. clin. Neurophysiol.

    (1984)
  • T. Allison et al.

    On the neural origin of early components of the somatosensory evoked potential

  • B. Anziska et al.

    Short latency SEPs to median nerve stimulation: comparison of recording methods and origin of components

    Electroenceph. clin. Neurophysiol.

    (1981)
  • H. Asanuma et al.

    Peripheral input pathways to monkey motor cortex

    Exp. Brain Res.

    (1980)
  • D. Brenner et al.

    Somatically evoked magnetic fields of the human brain

    Science

    (1978)
  • R.J. Broughton

    Discussion

  • G.G. Celesia

    Somatosensory evoked potentials recorded directly from the human thalamus and SmI cortical area

    Arch. Neurol. (Chic.)

    (1979)
  • K.H. Chiappa et al.

    Short-latency somatosensory evoked potentials following median nerve stimulation in patients with neurological lesions

  • O. Creuzfeldt et al.

    Relations between EEG phenomena and potentials in single cells

    Electroenceph. clin. Neurophysiol.

    (1969)
  • L. De Grandis

    Theory and Use of Color

  • J.E. Desmedt

    Somatosensory cerebral evoked potentials in man

  • Cited by (0)

    This research was supported by the Fonds de la Recherche Scientifique Médicale, Belgium.

    View full text