Skip to main content
Log in

Peroxisomal Disorders: Clinical, Biochemical, and Molecular Aspects

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Peroxisomes are subcellular organelles catalyzing a number of indispensable functions in cellular metabolism. The importance of peroxisomes in man is stressed by the existence of an expanding group of genetic diseases in which there is an impairment in one or more peroxisomal functions. Much has been learned in recent years about these functions and many of the enzymes involved have been characterized, purified and their cDNAs cloned. This has allowed resolution of the enzymatic and molecular basis of many of the single peroxisomal enzyme deficiencies. Similarly, the molecular basis of the peroxisome biogenesis disorders is also being resolved rapidly thanks to the successful use of CHO as well as yeast mutants. In this paper we will provide an overview of the peroxisomal disorders with particular emphasis on their clinical, biochemical and molecular characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Bowen, P., C.S.M. Lee, H. Zellweger, and R. Lindenberg. 1964. A familial syndrome of multiple congenital defects. Bull. Johns Hopkins Hosp. 114:402-414.

    Google Scholar 

  2. Goldfischer, S., C.L. Moore, A.B. Johnson, A.J. Spiro, M.P. Valsamis, H.K. Wisniewski, R.H. Ritch, W.T. Norton, I. Rapin, and L.M. Gartner. 1973. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science. 182:62-64.

    Google Scholar 

  3. Brown, F.R., 3d, A.J. McAdams, J.W. Cummins, R. Konkol, I. Singh, A.B. Moser, and H.W. Moser. 1982. Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids. Johns. Hopkins. Med. J. 151:344-351.

    Google Scholar 

  4. Moser, H.W., A.B. Moser, N. Kawamura, J. Murphy, K. Suzuki, H. Schaumburg, and Y. Kishimoto. 1980. Adrenoleukodystrophy: elevated C26 fatty acid in cultured skin fibroblasts. Ann. Neurol. 7:542-549.

    Google Scholar 

  5. Moser, H.W., A.B. Moser, K. K. Frayer, W. Chen, J.D. Schulman, B.P. O'Neill, and Y. Kishimoto. 1981. Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids. Neurology. 31:1241-1249.

    Google Scholar 

  6. Kelley, R.I., N.S. Datta, W.B. Dobyns, A.K. Hajra, A.B. Moser, M.J. Noetzel, E.H. Zackai, and H.W. Moser. 1986. Neonatal adrenoleukodystrophy: new cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am. J. Med. Genet. 23:869-901.

    Google Scholar 

  7. Hajra, A.K., C.L. Burke, and C.L. Jones. 1979. Subcellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies). J. Biol. Chem. 254:10896-10900.

    Google Scholar 

  8. Heymans, H.S.A., R.B.H. Schutgens, R. Tan, H. van den Bosch, and P. Borst. 1983. Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature. 306:69-70.

    Google Scholar 

  9. Heymans, H.S.A., J.W. Oorthuys, G. Nelck, R.J.A. Wanders, and R.B.H. Schutgens. 1985. Rhizomelic chondrodysplasia punctata: another peroxisomal disorder. N. Engl. J. Med. 313:187-188.

    Google Scholar 

  10. Singh, I., A.E. Moser, S. Goldfischer, and H.W. Moser. 1984. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc. Natl. Acad. Sci. U.S.A. 81:4203-4207.

    Google Scholar 

  11. Wanders, R.J.A. and J.M. Tager. 1998. Lipid metabolism in peroxisomes in relation to human disease. Mol. Aspects Med. 19:71-154.

    Google Scholar 

  12. Hashimoto, T. 1996. Peroxisomal beta-oxidation: enzymology and molecular biology. Ann. N. Y. Acad. Sci. 804:86-98.

    Google Scholar 

  13. Osumi, T., T. Hashimoto, and N. Ui. 1980. Purification and properties of acyl-CoA oxidase from rat liver. J. Biochem. (Tokyo). 87:1735-1746.

    Google Scholar 

  14. Osumi, T. and T. Hashimoto. 1979. Peroxisomal beta oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem. Biophys. Res. Commun. 89:580-584.

    Google Scholar 

  15. Furuta, S., S. Miyazawa, T. Osumi, T. Hashimoto, and N. Ui. 1980. Properties of mitochondrial and peroxisomal enoyl-CoA hydratases from rat liver. J. Biochem. (Tokyo). 88:1059-1070.

    Google Scholar 

  16. Miyazawa, S., T. Osumi, and T. Hashimoto. 1980. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur. J. Biochem. 103:589-596.

    Google Scholar 

  17. Miyazawa, S., S. Furuta, T. Osumi, T. Hashimoto, and N. Ui. 1981. Properties of peroxisomal 3-ketoacyl-coA thiolase from rat liver. J. Biochem. (Tokyo). 90:511-519.

    Google Scholar 

  18. Vanhove, G.F., P.P. Van Veldhoven, M. Fransen, S. Denis, H.J. Eyssen, R.J.A. Wanders, and G.P. Mannaerts. 1993. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di-and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J. Biol. Chem. 268:10335-10344.

    Google Scholar 

  19. Jiang, L.L., T. Kurosawa, M. Sato, Y. Suzuki, and T. Hashimoto. 1997. Physiological role of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein. J. Biochem. (Tokyo). 121:506-513.

    Google Scholar 

  20. Qin, Y.M., M.H. Poutanen, H.M. Helander, A.P. Kvist, K.M. Siivari, W. Schmitz, E. Conzelmann, U. Hellman, and J.K. Hiltunen. 1997. Peroxisomal multifunctional enzyme of beta-oxidation metabolizing D-3-hydroxyacyl-CoA esters in rat liver: molecular cloning, expression and characterization. Biochem. J. 321:21-28.

    Google Scholar 

  21. Dieuaide-Noubhani, M., D. Novikov, E. Baumgart, J.C. Vanhooren, M. Fransen, M. Goethals, J. Vandekerckhove, P.P. Van Veldhoven, and G.P. Mannaerts. 1996. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di-and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur. J. Biochem. 240:660-666.

    Google Scholar 

  22. Dieuaide-Noubhani, M., S. Asselberghs, G.P. Mannaerts, and P.P. Van Veldhoven. 1997. Evidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta-oxidation of pristanic acid. Biochem. J. 325:367-373.

    Google Scholar 

  23. Wanders, R.J.A., S. Denis, F. Wouters, K.W. Wirtz, and U. Seedorf. 1997. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes. Biochem. Biophys. Res. Commun. 236:565-569.

    Google Scholar 

  24. Antonenkov, V.D., P.P. Van Veldhoven, E. Waelkens, and G.P. Mannaerts. 1997. Substrate specificities of 3-oxoacyl-CoA thiolase purified A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates. J. Biol. Chem. 272:26023-26031.

    Google Scholar 

  25. Bunya, M., M. Maebuchi, T. Kamiryo, T. Kurosawa, M. Sato, M. Tohma, L.L. Jiang, and T. Hashimoto. 1998. Thiolase involved in bile acid formation. J. Biochem. (Tokyo). 123:347-352.

    Google Scholar 

  26. Suzuki, Y., L.L. Jiang, M. Souri, S. Miyazawa, S. Fukuda, Z. Zhang, M. Une, N. Shimozawa, N. Kondo, T. Orii, and T. Hashimoto. 1997. D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency: a newly identified peroxisomal disorder. Am. J. Hum. Genet. 61:1153-1162.

    Google Scholar 

  27. van Grunsven, E.G., E. van Berkel, L. IJlst, P. Vreken, J.B. de Klerk, J. Adamski, H. Lemonde, P.T. Clayton, D.A. Cuebas, and R.J. Wanders. 1998. Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc. Natl. Acad. Sci. U. S. A. 95:2128-2133.

    Google Scholar 

  28. Seedorf, U., P. Brysch, T. Engel, K. Schrage, and G. Assmann. 1994. Sterol carrier protein X is peroxisomal 3-oxoacyl coenzyme A thiolase with intrinsic sterol carrier and lipid transfer activity. J. Biol. Chem. 269:21277-21283.

    Google Scholar 

  29. Wanders, R.J.A., S. Denis, E. van Berkel, F. Wouters, K.W.A. Wirtz, and U. Seedorf. 1998. Identification of the newly discovered 58 kDa peroxisomal thiolase SCPx as the main thiolase involved in both pristanic acid and trihydroxycholestanoic acid oxidation: implications for peroxisomal b-oxidation disorders. J. Inherit. Metab. Dis. 21:302-305.

    Google Scholar 

  30. Seedorf, U., M. Raabe, P. Ellinghaus, F. Kannenberg, M. Fobker, T. Engel, S. Denis, F. Wouters, K.W. Wirtz, R.J. Wanders, N. Maeda, and G. Assmann. 1998. Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes. Dev. 12:1189-1201.

    Google Scholar 

  31. Hajra, A.K. and A.K. Das. 1996. Lipid biosynthesis in peroxisomes. Ann. N. Y. Acad. Sci. 804:129-141.

    Google Scholar 

  32. Wanders, R.J., H. Schumacher, J. Heikoop, R.B. Schutgens, and J.M. Tager. 1992. Human dihydroxyacetonephosphate acyltransferase deficiency: a new peroxisomal disorder. J. Inherit. Metab. Dis. 15:389-391.

    Google Scholar 

  33. Wanders, R.J., C. Dekker, V.A. Horvath, R.B. Schutgens, J.M. Tager, P. Van Laer, and D. Lecoutere. 1994. Human alkyldihydroxyacetonephosphate synthase deficiency: a new peroxisomal disorder. J. Inherit. Metab. Dis. 17:315-318.

    Google Scholar 

  34. Tsai, S.C., J. Avigan, and D. Steinberg. 1969. Studies on the alpha oxidation of phytanic acid by rat liver mitochondria J. Biol. Chem. 244:2682-2692.

    Google Scholar 

  35. Singh, I., K. Pahan, G.S. Dhaunsi, O. Lazo, and P. Ozand. 1993. Phytanic acid alpha-oxidation. Differential subcellular localization in rat and human tissues and its inhibition by nycodenz. J. Biol. Chem. 268:9972-9979.

    Google Scholar 

  36. Watkins, P.A., A.E. Howard, and S.J. Mihalik. 1994. Phytanic acid must be activated to phytanoyl-CoA prior to its alpha-oxidation in rat liver peroxisomes. Biochim. Biophys. Acta 1214:288-294.

    Google Scholar 

  37. Mihalik, S.J., A.M. Rainville, and P.A. Watkins. 1995. Phytanic acid alpha-oxidation in rat liver peroxisomes. Production of alpha-hydroxyphytanoyl-CoA and formate is enhanced by dioxygenase cofactors. Eur. J. Biochem. 232:545-551.

    Google Scholar 

  38. Croes, K., M. Casteels, E. de Hoffmann, G.P. Mannaerts, and P.P. Van Veldhoven. 1996. alpha-Oxidation of 3-methyl-substituted fatty acids in rat liver. Production of formic acid instead of CO2, cofactor requirements, subcellular localization and formation of a 2-hydroxy-3-methylacyl-CoA intermediate. Eur. J. Biochem. 240:674-683.

    Google Scholar 

  39. Jansen, G.A., S.J. Mihalik, P.A. Watkins, H.W. Moser, C. Jakobs, S. Denis, and R.J.A. Wanders. 1996. Phytanoyl-CoA hydroxylase is present in human liver, located in peroxisomes, and deficient in Zellweger syndrome: direct, unequivocal evidence for the new, revised pathway of phytanic acid alpha-oxidation in humans. Biochem. Biophys. Res. Commun. 229:205-210.

    Google Scholar 

  40. Jansen, G.A., R.J.A. Wanders, P.A. Watkins, and S.J. Mihalik. 1997. Phytanoyl-coenzyme A hydroxylase deficiency—the enzyme defect in Refsum's disease. N. Engl. J. Med. 337:133-134.

    Google Scholar 

  41. Jansen, G.A., R. Ofman, S. Ferdinandusse, L. IJlst, A.O. Muijsers, O.H. Skjeldal, O. Stokke, C. Jakobs, G.T. Besley, J.E. Wraith, and R.J.A. Wanders. 1997. Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat. Genet. 17:190-193.

    Google Scholar 

  42. Mihalik, S.J., J.C. Morrell, D. Kim, K.A. Sacksteder, P.A. Watkins, and S.J. Gould. 1997. Identification of PAHX, a Refsum disease gene. Nat. Genet. 17:185-189.

    Google Scholar 

  43. Verhoeven, N.M., D.S. Schor, H.J. ten Brink, R.J.A. Wanders, and C. Jakobs. 1997. Resolution of the phytanic acid alpha-oxidation pathway: identification of pristanal as product of the decarboxylation of 2-hydroxyphytanoyl-CoA. Biochem. Biophys. Res. Commun. 237:33-36.

    Google Scholar 

  44. Croes, K., M. Casteels, S. Asselberghs, P. Herdewijn, G.P. Mannaerts, and P.P. Vanveldhoven. 1997. Formation of a 2-methylbranched fatty aldehyde during peroxisomal alpha-oxidation. FEBS. Lett. 412:643-645.

    Google Scholar 

  45. Wanders, R.J., G.J. Romeyn, R.B. Schutgens, and J.M. Tager. 1989. L-pipecolate oxidase: a distinct peroxisomal enzyme in man. Biochem. Biophys. Res. Commun. 164:550-555.

    Google Scholar 

  46. Mihalik, S.J., H.W. Moser, P.A. Watkins, D.M. Danks, A. Poulos, and W.J. Rhead. 1989. Peroxisomal L-pipecolic acid oxidation is deficient in liver from Zellweger syndrome patients. Pediatr. Res. 25:548-552.

    Google Scholar 

  47. Martinez, M. 1990. Severe deficiency of docosahexaenoic acid in peroxisomal disorders: a defect of delta 4 desaturation? Neurology. 40:1292-1298.

    Google Scholar 

  48. Moore, S.A., E. Hurt, E. Yoder, H. Sprecher, and A.A. Spector. 1995. Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J. Lipid. Res. 36:2433-2443.

    Google Scholar 

  49. Martinez, M. 1992. Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders: Brain. Res. 583:171-182.

    Google Scholar 

  50. Lazarow, P.B. and Y. Fujiki. 1985. Biogenesis of peroxisomes. [Review] [235 refs]. Annu. Rev. Cell. Biol. 1:489-530.

    Google Scholar 

  51. Titorenko, V.I. and R.A. Rachubinski. 1998. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. 18:2789-2803.

    Google Scholar 

  52. Elgersma, Y., L. Kwast, M. van den Berg, W.B. Snyder, B. Distel, Subramani, S., and H.F. Tabak. 1997. Overexpression of Pex 15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, cause proliferation of the endoplasmic reticulum membrane. EMBO. J. 16:7326-7341.

    Google Scholar 

  53. Titorenko, V.I. and R.A. Rachubinski. 1998. The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends. Biochem. Sci. 23:231-233.

    Google Scholar 

  54. Subramani, S. 1998. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol. Rev. 78:171-188.

    Google Scholar 

  55. Gould, S.J., G.A. Keller, and S. Subramani. 1988. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell. Biol. 107:897-905.

    Google Scholar 

  56. Erdmann, R., M. Veenhuis, D. Mertens, and W.H. Kunau. 1989. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 86:5419-5423.

    Google Scholar 

  57. Van der Leij, I., M. van den Berg, R. Boot, M. Franse, B. Distel, and H.F. Tabak. 1992. Isolation of peroxisome assembly mutants from Saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. J. Cell. Biol. 119:153-162.

    Google Scholar 

  58. Zhang, J.W., Y. Han, and P.B. Lazarow. 1993. Novel peroxisome clustering mutants and peroxisome biogenesis mutants of Saccharomyces cerevisiae. J. Cell. Biol. 123:1133-1147.

    Google Scholar 

  59. Elgersma, Y., M. van den Berg, H.F. Tabak, and B. Distel. 1993. An efficient positive selection procedure for the isolation of peroxisomal import and peroxisome assembly mutants of Saccharomyces cerevisiae. Genetics. 135:731-740.

    Google Scholar 

  60. Cregg, J.M., I.J. Vankiel, G.J. Sulter, M. Veenhuis, and W. Harder. 1990. Peroxisome-deficient mutants of Hansenula polymorpha. Yeast. 6:87-97.

    Google Scholar 

  61. Gould, S.J., D. McCollum, A.P. Spong, J.A. Heyman, and S. Subramani. 1992. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast. 8:613-628.

    Google Scholar 

  62. Liu, H., X. Tan, M. Veenhuis, D. McCollum, and J.M. Cregg. 1992. An efficient screen for peroxisome-deficient mutants of Pichia pastoris. J. Bacteriol. 174:4943-4951.

    Google Scholar 

  63. Nuttley, W.M., A.M. Brade, C. Gaillardin, G.A. Eitzen, J.R. Glover, and J.D. Aitchinson. 1993. Rapid identification and characterization of peroxisomal assembly mutants in Yarrowia Lipolytica. Yeast. 9:507-517.

    Google Scholar 

  64. Distel, B., R. Erdmann, S.J. Gould, G. Blobel, D.I. Crane, J.M. Cregg, G. Dodt, Y. Fujiki, J.M. Goodman, W.W. Just, J.A. Kiel, W.H. Kunau, P.B. Lazarow, G.P. Mannaerts, H.W. Moser, T. Osumi, R.A. Rachubinski, A. Roscher, S. Subramani, H.F. Tabak, T. Tsukamoto, D. Valle, I. van der Klei, P.P. Van Veldhoven, and M. Veenhuis. 1996. A unified nomenclature for peroxisome biogenesis factors. J. Cell. Biol. 135:1-3.

    Google Scholar 

  65. Wanders, R.J., H.S. Heymans, R.B. Schutgens, P.G. Barth, H. van den Bosch, and J.M. Tager. 1998. Peroxisomal disorders in neurology. J. Neurol. Sci. 88:1-39.

    Google Scholar 

  66. Wanders, R.J.A., P.G. Barth, R.B.H. Schutgens, and H.S.A. Heijmans. 1996. Peroxisomal disorders: Post-and prenatal diagnosis based on a new classification with flowcharts. Int. Pediatr. 11:203-214.

    Google Scholar 

  67. Poll-The, B.T., F. Roels, H. Ogier, J. Scotto, J. Vamecq, R.B.H. Schutgens, R.J.A. Wanders, C.W.T. van Roermund, M.J. van Wijland, A.W. Schram, and et al. 1988. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am. J. Hum. Genet. 42:422-434.

    Google Scholar 

  68. Goldfischer, S., J. Collins, I. Rapin, P. Neumann, W. Neglia, A.J. Spiro, T. Ishii, F. Roels, J. Vamecq, and F. Van Hoof. 1986. Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. J. Pediatr. 108:25-32.

    Google Scholar 

  69. Schram, A.W., S. Goldfischer, C.W. van Roermund, E.M. Brouwer-Kelder, J. Collins, T. Hashimoto, H.S. Heymans, H. van den Bosch, R.B. Schutgens, J.M. Tager, and et al. 1987. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. Proc. Natl. Acad. Sci. U.S.A. 84:2494-2496.

    Google Scholar 

  70. Passarge, E. and A.J. McAdams. 1967. Cerebro-hepato-renal syndrome. A newly recognized hereditary disorder of multiple congenital defects, including sudanophilic leukodystrophy, cirrhosis of the liver, and polycystic kidneys. J. Pediatr. 71:691-702.

    Google Scholar 

  71. Wilson, G.N., R.D. Holmes, and A.K. Hajra. 1988. Peroxisomal disorders: clinical commentary and future prospects. Am. J. Med. Genet. 30:771-792.

    Google Scholar 

  72. Lazarow, P.B. and H.W. Moser. 1995. Disorders of peroxisome biogenesis. In The metabolic and molecular bases of inherited disease. C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, editors. McGraw-Hill, New York. 2287-2324.

    Google Scholar 

  73. Wanders, R.J., C.W. van Roermund, M.J. van Wijland, R.B. Schutgens, J.M. Tager, H. van den Bosch, and G.H. Thomas. 1988. Peroxisomes and peroxisomal functions in hyperpipecolic acidaemia. J. Inherit. Metab. Dis. 11Suppl 2:161-164.

    Google Scholar 

  74. Scotto, J.M., M. Hadchouel, M. Odievre, M.H. Laudat, J.M. Saudubray, O. Dulac, I. Beucler, and P. Beaune. 1982. Infantile phytanic acid storage disease, a possible variant of Refsum's disease: three cases, including ultrastructural studies of the liver. J. Inherit. Metab. Dis. 5:83-90.

    Google Scholar 

  75. Poll-The, B.T., J.M. Saudubray, H.A. Ogier, M. Odievre, J.M. Scotto, L. Monnens, L.C. Govaerts, F. Roels, A. Cornelis, R.B. Schutgens, and et al. 1987. Infantile Refsum disease: an inherited peroxisomal disorder. Comparison with Zellweger syndrome and neonatal adrenoleukodystrophy. Eur. J. Pediatr. 146:477-483.

    Google Scholar 

  76. Watkins, P.A., W.W. Chen, C.J. Harris, G. Hoefler, S. Hoefler, D.C. Blake, Jr., A. Balfe, R.I. Kelley, A.B. Moser, M.E. Beard, and et al. 1989. Peroxisomal bifunctional enzyme deficiency. J. Clin. Invest. 83:771-777.

    Google Scholar 

  77. Wanders, R.J.A., R.B.H. Schutgens, and P.G. Barth. 1995. Peroxisomal disorders: a review. J. Neuropathol. Exp. Neurol. 54:726-739.

    Google Scholar 

  78. Brul, S., A. Westerveld, A. Strijland, R.J. Wanders, A.W. Schram, H.S. Heymans, R.B. Schutgens, H. van den Bosch, and J.M. Tager. 1988. Genetic heterogeneity in the cerebrohepatorenal (Zellweger) syndrome and other inherited disorders with a generalized impairment of peroxisomal functions. A study using complementation analysis. J. Clin. Invest. 81:1710-1715.

    Google Scholar 

  79. Moser, A.B., M. Rasmussen, S. Naidu, P.A. Watkins, M. McGuinness, A.K. Hajra, G. Chen, G. Raymond, A. Liu, D. Gordon, and et al. 1995. Phenotype of patients with peroxisomal disorders subdivided into sixteen complementation groups. J. Pediatr. 127:13-22.

    Google Scholar 

  80. Reuber, B.E., E. Germain-Lee, C.S. Collins, J.C. Morrell, R. Ameritunga, Moser, HW, D. Valle, and S.J. Gould. 1997. Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat. Genet. 17:445-448.

    Google Scholar 

  81. Portsteffen, H., A. Beyer, E. Becker, C. Epplen, A. Pawlak, W.H. Kunau, Dodt, G. 1997. Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Nat. Genet. 17:449-452.

    Google Scholar 

  82. Smeitink, J.A., F.A. Beemer, M. Espeel, R.A. Donckerwolcke, C. Jakobs, R.J. Wanders, R.B. Schutgens, F. Roels, M. Duran, L. Dorland, and et al. 1992. Bone dysplasia associated with phytanic acid accumulation and deficient plasmalogen synthesis: a peroxisomal entity amenable to plasmapheresis. J. Inherit. Metab. Dis. 15:377-380.

    Google Scholar 

  83. Braverman, N., G. Steel, C. Obie, A.B. Moser, H.W. Moser, S.J. Gould, and D. Valle. 1997. Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat. Genet. 15:369-376.

    Google Scholar 

  84. Motley, A.M., E.H. Hettema, E.M. Hogenhout, P. Brites, A.L. ten Asbroek, F.A. Wijburg, F. Baas, H.S.A. Heijmans, H.F. Tabak, R.J.A. Wanders, and B. Distel. 1997. Rhizomelic chondrodysplasia punctata is a peroxisomal protein targeting disease caused by a non-functional PTS2 receptor. Nat. Genet. 15:377-380.

    Google Scholar 

  85. Purdue, P.E., J.W. Zhang, M. Skoneczny, and P.B. Lazarow. 1997. Rhizomelic chondrodysplasia punctata is caused by deficiency of human PEX7, a homologue of the yeast PTS2 receptor. Nat. Genet. 15:381-384.

    Google Scholar 

  86. Ofman, R., E.H. Hettema, E.M. Hogenhout, U. Caruso, A.O. Muijsers, and R.J.A. Wanders. 1998. Acyl-CoA-dihydroxyacetonephosphate acyltransferase-cloning of the human cDNA and resolution of the molecular basis in rhizomelic chondrodysplasia punctata type 2. Hum. Mol. Genet. 7:847-853.

    Google Scholar 

  87. de Vet, E.C.J.M., L. IJlst, W. Oostheim, R.J.A. Wanders, and H. van den Bosch. 1998. Alkyl-dihydroxyacetonephosphate synthase: fate in peroxisome biogenesis disorders and identification of the point mutation underlying a single enzyme deficiency. J. Biol. Chem. 273:10296-10301.

    Google Scholar 

  88. Thai, T.P., H. Heid, H.R. Rackwitz, A. Hunziker, K. Gorgas, and W.W. Just. 1997. Ether lipid biosynthesis-isolation and molecular characterization of human dihydroxyacetonephosphate acyltransferase. FEBS. Lett. 420:205-211.

    Google Scholar 

  89. de Vet, E.C., B.T. van den Broek, and H. van den Bosch. 1997. Nucleotide sequence of human alkyl-dihydroxyacetonephosphate synthase cDNA reveals the presence of a peroxisomal targeting signal 2. Biochim. Biophys. Acta 1346:25-29.

    Google Scholar 

  90. Moser, H.W., K.D. Smith, and A.B. Moser. 1995. X-linked adrenoleukodystrophy. In The metabolic and molecular bases of inherited disease. C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, editors. McGraw-Hill, New York. 2325-2349.

    Google Scholar 

  91. Mosser, J., A.M. Douar, C.O. Sarde, P. Kioschis, R. Feil, H. Moser, A.M. Poustka, J.L. Mandel, and P. Aubourg. 1993. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature. 361:726-730.

    Google Scholar 

  92. Mosser, J., Y. Lutz, M.E. Stoeckel, C.O. Sarde, C. Kretz, A.M. Douar, J. Lopez, P. Aubourg, and J.L. Mandel. 1994. The gene responsible for adrenoleukodystrophy encodes a peroxisomal membrane protein. Hum. Mol. Genet. 3:265-271.

    Google Scholar 

  93. Lageweg, W., J.M. Tager, and R.J.A. Wanders. 1991. Topography of very-long-chain-fatty-acid-activating activity in peroxisomes from rat liver. Biochem. J. 276:53-56.

    Google Scholar 

  94. Lazo, O., M. Contreras, and I. Singh. 1990. Topographical localization of peroxisomal acyl-CoA ligases: differential localization of palmitoyl-CoA and lignoceroyl-CoA ligases. Biochemistry. 29:3981-3986.

    Google Scholar 

  95. Verleur, N., E.H. Hettema, C.W.T. van Roermund, H.F. Tabak, and R.J.A. Wanders. 1997. Transport of activated fatty acids by the peroxisomal ATP-binding-cassette transporter Pxa2 in a semi-intact yeast cell system. Eur. J. Biochem. 249:657-661.

    Google Scholar 

  96. Gartner, J., A. Braun, A. Holzinger, P. Roerig, H.G. Lenard, and A.A. Roscher. 1998. Clinical and genetic aspects of X-linked adrenoleukodystrophy. Neuropediatrics. 29:3-13.

    Google Scholar 

  97. Steinberg, D. 1995. Refsum disease. In The metabolic and molecular bases of inherited disease. C. R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle, editors. McGraw-Hill, New York. 2351-2369.

    Google Scholar 

  98. Shimozawa, N., T. Tsukamoto, Y. Suzuki, T. Orii, Y. Shirayoshi, T. Mori, and Y. Fujiki. 1992. A human gene responsible for Zellweger syndrome that affects peroxisome assembly. Science. 255:1132-1134.

    Google Scholar 

  99. Kammerer, S., A. Holzinger, U. Welsch, and A.A. Roscher. 1998. Cloning and characterization of the gene encoding the human peroxisomal assembly protein Pex3p. FEBS. Lett. 429:53-60.

    Google Scholar 

  100. Dodt, G., N. Braverman, C. Wong, A. Moser, H.W. Moser, P. Watkins, D. Valle, and S.J. Gould. 1995. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat. Genet. 9:115-125.

    Google Scholar 

  101. Wiemer, E.A., W.M. Nuttley, B.L. Bertolaet, X. Li, U. Francke, M.J. Wheelock, U.K. Anne, K.R. Johnson, and S. Subramani. 1995. Human peroxisomal targeting signal-I receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell. Biol. 130:51-65.

    Google Scholar 

  102. Fransen, M., C. Brees, E. Baumgart, J.C. Vanhooren, M. Baes, G.P. Mannaerts, and P.P. Van Veldhoven. 1995. Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270:7731-7736.

    Google Scholar 

  103. Yahraus, T., N. Braverman, G. Dodt, J.E. Kalish, J.C. Morrell, H.W. Moser, D. Valle, and S.J. Gould. 1996. The peroxisome biogenesis disorder group 4 gene, PXAAA1, encodes a cytoplasmic ATPase required for stability of the PTS1 receptor. EMBO. J. 15:2914-2923.

    Google Scholar 

  104. Warren, D.S., J.C. Morrell, H.W. Moser, D. Valle, and S.J. Gould. 1998. Identification of PEX10, the gene defective in complementation group 7 of the peroxisome-biogenesis disorders. Am. J. Hum. Genet. 63:347-359.

    Google Scholar 

  105. Chang, C.C., W.H. Lee, H.W. Moser, D. Valle, and S.J. Gould. 1997. Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat. Genet. 15:385-388.

    Google Scholar 

  106. Okumoto, K. and Y. Fujiki. 1997. PEX12 encodes an integral membrane protein of peroxisomes. Nat. Genet. 17:265-266.

    Google Scholar 

  107. Okumoto, K., N. Shimozawa, A. Kawai, S. Tamura, T. Tsukamoto, T. Osumi, H. Moser, R.J. Wanders, Y. Suzuki, N. Kondo, and Y. Fujiki. 1998. PEX12, the pathogenic gene of group III Zellweger syndrome: cDNA cloning by functional complementation on a CHO cell mutant, patient analysis, and characterization of PEX12p. Mol. Cell. Biol. 18:4324-4336.

    Google Scholar 

  108. Gould, S.J., J.E. Kalish, J.C. Morrell, J. Bjorkman, A.J. Urquhart, and D.I. Crane. 1996. Pex13p is an SH3 protein of the peroxisome membrane and a docking factor for the predominantly cytoplasmic PTS1 receptor. J. Cell. Biol. 135:85-95.

    Google Scholar 

  109. Albertini, M., P. Rehling, R. Erdmann, W. Girzalsky, J.A. Kiel, M. Veenhuis, and W.H. Kunau. 1997. Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell. 89:83-92.

    Google Scholar 

  110. Komori, M., S.W. Rasmussen, J.A. Kiel, R.J. Baerends, J.M. Cregg, van der Kleÿ, IJ, and M. Veenhuis. 1997. The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO. J. 16:44-53.

    Google Scholar 

  111. Fransen, M., S.R. Terlecky, and S. Subramani. 1998. Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc. Natl. Acad. Sci. U. S. A. 95:8087-8092.

    Google Scholar 

  112. Eitzen, G.A., R.K. Szilard, and R.A. Rachubinski. 1997. Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J. Cell. Biol. 137:1265-1278.

    Google Scholar 

  113. Huhse, B., P. Rehling, M. Albertini, L. Blank, K. Meller, and W.H. Kunau. 1998. Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J. Cell. Biol. 140:49-60.

    Google Scholar 

  114. Gotte, K., W. Girzalsky, M. Linkert, E. Baumgart, S. Kammerer, W.H. Kunau, and R. Erdmann. 1998. Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol. Cell. Biol. 18:616-628.

    Google Scholar 

  115. Kammerer, S., N. Arnold, W. Gutensohn, H.W. Mewes, W.H. Kunau, G. Hofler, A.A. Roscher, and A. Braun. 1997. Genomic organization and molecular characterization of a gene encoding HsPXF, a human peroxisomal farneslated protein. Genomics. 45:200-210.

    Google Scholar 

  116. Shimozawa, N., Y. Suzuki, T. Orii, A. Moser, H.W. Moser, and R.J. Wanders. 1993. Standardization of complementation grouping of peroxisome-deficient disorders and the second Zellweger patient with peroxisomal assembly factor-1 (PAF-1) defect. Am. J. Hum. Genet. 52:843-844.

    Google Scholar 

  117. Shimozawa, N., Y. Suzuki, Z. Zhang, A. Imamura, T. Tsukamoto, T. Osumi, K. Tateishi, K. Okumoto, Y. Fujiki, T. Orii, P.G. Barth, R.J. Wanders, and N. Kondo. 1998. Peroxisome biogenesis disorders: identification of a new complementation group distinet from peroxisome-deficient CHO mutants and not complemented by human PEX 13. Biochem. Biophys. Res. Commun. 243:368-371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanders, R.J. Peroxisomal Disorders: Clinical, Biochemical, and Molecular Aspects. Neurochem Res 24, 565–580 (1999). https://doi.org/10.1023/A:1022592014988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022592014988

Navigation