Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopaminergic regulation of cerebral cortical microcirculation

Abstract

Functional variations in cerebral cortical activity are accompanied by local changes in blood flow, but the mechanisms underlying this physiological coupling are not well understood. Here we report that dopamine, a neurotransmitter normally associated with neuromodulatory actions, may directly affect local cortical blood flow. Using light and electron-microscopic immunocytochemistry, we show that dopaminergic axons innervate the intraparenchymal microvessels. We also provide evidence in an in vitro slice preparation that dopamine produces vasomotor responses in the cortical vasculature. These anatomical and physiological observations reveal a previously unknown source of regulation of the microvasculature by dopamine. The findings may be relevant to the mechanisms underlying changes in blood flow observed in circulatory and neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of close appositions of dopamine-transporter-labeled axons on all blood vessels in a section through cortical layers I-IIIa in area 9.
Figure 2: High-power photographs of dopaminergic terminals associated with small cortical blood vessels.
Figure 3: Correlated light- and electron-microscopic analysis of dopamine terminals associated with the microvasculature.
Figure 4: Catecholaminergic innervation of pial arteries.
Figure 5: DIC videomicroscopic images of cortical microvessels responding to perivascular iontophoretic application of dopamine with +10 to +60 nA current in ferret prefrontal cortical slices.

Similar content being viewed by others

References

  1. Cox, S. B., Woolsey, T. A. & Rovainen, C. M. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab. 13, 899–913 (1993).

    Article  CAS  Google Scholar 

  2. Magistretti, P. J. & Pellerin, L. The cellular bases of functional brain imaging: evidence for astrocyte-neuron metabolic coupling. Neuroscientist 3, 361–365 (1997).

    Article  CAS  Google Scholar 

  3. Lou, H. C., Edvinsson, L. & MacKenzie, E. T. The concept of coupling blood flow to brain function: revision required? Ann. Neurol. 22, 289– 297 (1987).

    Article  CAS  Google Scholar 

  4. Iadecola, C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends Neurosci. 16, 206– 214 (1993).

    Article  CAS  Google Scholar 

  5. Wahl, M. & Schilling, L. Regulation of cerebral blood flow – a brief review. Acta Neurochir. (Suppl.) 59, 3–10 (1993).

    CAS  Google Scholar 

  6. MacKenzie, E. T. & Scatton, B. Cerebral circulation and metabolic effects of perivascular neurotransmitters. Crit. Rev. Clin. Neurobiol. 2, 357–419 ( 1987).

    CAS  Google Scholar 

  7. Hartman, B. K., Zide, D. & Udenfriend, S. The use of dopamine hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc. Natl. Acad. Sci. USA 69, 2722–2726 (1972).

    Article  CAS  Google Scholar 

  8. Raichle, M. E., Hartman, B. K., Eichling, J. O. & Sharpe, L. G. Central noradrenergic regulation of cerebral blood flow and vascular permeability . Proc. Natl. Acad. Sci. USA 72, 3726– 3730 (1975).

    Article  CAS  Google Scholar 

  9. Sato, A. & Sato, Y. Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. Neurosci. Res. 14, 242–274 ( 1992).

    Article  CAS  Google Scholar 

  10. Vaucher, E. & Hamel, E. Cholinergic basal forebrain neurons project to cortical microvessels in the rat: electron microscopic study with anterogradely transported Phaseolus vulgaris leucoagglutinin and choline acetyltransferase . J. Neurosci. 15, 7427– 7441 (1995).

    Article  CAS  Google Scholar 

  11. Reinhard, J. F., Liebmann, J. E., Schlosbery, A. J. & Moskowitz, M. A. Serotonin neurons project to small blood vessels in the brain. Science 206, 85–87 ( 1979).

    Article  CAS  Google Scholar 

  12. Dacey, R. G., Jr., Bassett, J. E. & Takayasu, M. Vasomotor responses of rat intracerebral arterioles to vasoactive intestinal peptide, substance P, neuropeptide Y, and bradykinin . J. Cereb. Blood Flow Metab. 8, 254– 261 (1988).

    Article  CAS  Google Scholar 

  13. Favard, C., Simon, A., Vigny, A. & Nguyen-Legros, J. Ultrastructural evidence for a close relationship between dopamine cell processes and blood capillary walls in Macaca monkey and rat retina. Brain Res. 523, 127–133 (1990).

    Article  CAS  Google Scholar 

  14. Weil-Fugazza, J., Onteniente, B., Audet, G. & Philippe, E. Dopamine as trace amine in the dorsal root ganglia. Neurochem. Res. 18, 965–969 ( 1993).

    Article  CAS  Google Scholar 

  15. Goldman-Rakic, P. S., Lidow, M. S., Smiley, J. F. & Williams, M. S. The anatomy of dopamine in monkey and human prefrontal cortex. J. Neural Transm. (Suppl.) 36, 163– 177 (1992).

    CAS  Google Scholar 

  16. Williams, S. M. & Goldman-Rakic, P. S. Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb. Cortex 3, 199– 222 (1993).

    Article  CAS  Google Scholar 

  17. Morrison, J. H., Foote, S. L., O'Connor, D. & Bloom, F. E. Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-beta-hydroxylase immunohistochemistry. Brain Res. Bull. 9, 309–319 (1982).

    Article  CAS  Google Scholar 

  18. Williams, G. V. & Goldman-Rakic, P. S. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376, 572–575 (1995).

    Article  CAS  Google Scholar 

  19. Cohen, Z., Ehret, M., Maitre, M. & Hamel, E. Ultrastructural analysis of tryptophan hydroxylase immunoreactive nerve terminals in the rat cerebral cortex and hippocampus: their associations with local blood vessels . Neuroscience 66, 555– 569 (1995).

    Article  CAS  Google Scholar 

  20. Cohen, Z., Molinatti, G. & Hamel, E. Astroglial and vascular interactions of noradrenaline terminals in the rat cerebral cortex. J. Cereb. Blood Flow Metab. 17, 894–904 (1997).

    Article  CAS  Google Scholar 

  21. Shepro, D. & Morel, N. M. L. Pericyte physiology. FASEB J. 7, 1031–1038 ( 1993).

    Article  CAS  Google Scholar 

  22. Haefliger, I. O., Zschauer, A. & Anderson, D. R. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest. Opthalmol. Vis. Sci. 35, 991–997 (1994).

    CAS  Google Scholar 

  23. Sagher, O. et al. Live computerized videomicroscopy of cerebral microvessels in brain slices . J. Cereb. Blood Flow Metab. 13, 676– 682 (1993).

    Article  CAS  Google Scholar 

  24. Farber, N. E. et al. Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology 87, 1191–1198 (1997).

    Article  CAS  Google Scholar 

  25. Cepeda, C., Radisavljevic, Z., Peacock, W., Levine, M. S. & Buchwald, N. A. Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11, 330–341 (1992).

    Article  CAS  Google Scholar 

  26. Geijo-Barrientos, E. & Pastore, C. The effects of dopamine on the subthreshold electrophysiological responses of rat prefrontal cortex neurons in vitro. Eur. J. Neurosci. 7, 358–366 (1995).

    Article  CAS  Google Scholar 

  27. Edvinsson, L., McCulloch, J. & Sharkey, J. Vasomotor responses of cerebral arterioles in situ to putative dopamine receptor agonists. Br. J. Pharmacol. 85, 403– 410 (1985).

    Article  CAS  Google Scholar 

  28. Goldberg, L. I. Dopamine receptors and hypertension. Physiologic and pharmacologic implications. Am. J. Med. 77, 37–44 ( 1984).

    Article  CAS  Google Scholar 

  29. Weinberger, D. R., Berman, K. F. & Illowsky, B. P. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Arch. Gen. Psychiatry 45, 609 –615 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Klara Szigeti for preparing tissue for electron microscopy, and David McCormick for providing us with ferret frontal cortex for the physiological experiments. This work was supported by MH44866 and a Pfizer Postdoctoral Fellowship to ECM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Goldman-Rakic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krimer, L., Muly, E., Williams, G. et al. Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1, 286–289 (1998). https://doi.org/10.1038/1099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing