Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1

Abstract

Cell surface molecules have been implicated in cell interactions which underlie formation of the nervous system. The analysis of the functional properties of such molecules has profited from the combined use of antibodies and cell culture systems. It has been suggested that the interplay between these molecules modulates cell-to-cell interaction at critical developmental stages1,2. In the mouse, N-CAM1,3 and L1 antigen4 have been shown to mediate Ca2+-independent adhesion among neural cells. N-CAM plays a role in fasciculation of neurites and formation of neuromuscular junction. L1 is apparently not involved in synaptogenesis, but in migration of granule cell neurones in the developing mouse cerebellar cortex5. The two antigens are distinct molecular and functional entities which act synergistically in aggregation of neuroblastoma6 and early postnatal cerebellar cells7. In view of a certain similarity in function between the two groups of molecules, it was not surprising to find that structural similarities are detectable by the monoclonal antibody L2. We show here that a carbohydrate moiety recognized by L2 and HNK-1 monoclonal antibodies, is present in mouse N-CAM and LI. The L2 epitope appears on all major neural cell types but not all N-CAM molecules express it. This heterogeneity points to a previously undetected molecular diversity which may have functional implications for modulating cell adhesion during development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Edelman, G. M. et al. Cold Spring Harb. Symp. quant. Biol. 48, 515–526 (1983).

    Article  CAS  Google Scholar 

  2. Schachner, M. et al. Cold Spring Harb. Symp. quant. Biol. 48, 557–568 (1983).

    Article  CAS  Google Scholar 

  3. Goridis, C. et al. Cold Spring Harb. Symp. quant. Biol. 48, 527–538 (1983).

    Article  CAS  Google Scholar 

  4. Rathjen, F. G. & Schachner, M. EMBO J. 3, 1–10 (1984).

    Article  CAS  Google Scholar 

  5. Lindner, J., Rathjen, F. G. & Schachner, M. Nature 305, 427–430 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Rathjen, F. G. & Rutishauser, U. EMBO J. 3, 461–465 (1984).

    Article  CAS  Google Scholar 

  7. Faissner, A., Kruse, J., Goridis, C., Bock, E. & Schachner, M. EMBO J. 3, 733–737 (1984).

    Article  CAS  Google Scholar 

  8. Hirn, M., Pierres, M., Deagostini-Bazin, H., Hirsch, M. & Goridis, C. Brain Res. 214, 433–439 (1981).

    Article  CAS  Google Scholar 

  9. Hirn, M., Ghandour, M. S., Deagostini-Bazin, H. & Goridis, C. Brain Res. 265, 87–100 (1983).

    Article  CAS  Google Scholar 

  10. Abo, T. & Balch, C. M. J. Immun. 127, 1024–1029 (1981).

    CAS  PubMed  Google Scholar 

  11. McGarry, R. C., Helfand, S. L., Quarles, R. H. & Roder, J. C. Nature 306, 376–378 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Schuller-Petrovic, S., Gebhart, W., Lassmann, H., Rumpold, H. & Kraft, D. Nature 306, 179–181 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Quartes, R. H., Johnson, D., Brady, R. O. & Sternberger, N. H. Neurochem. Res. 6, 1115–1127 (1981).

    Article  Google Scholar 

  14. Spiro, R. G. Meth. Enzym. 8, 26–52 (1966).

    Article  CAS  Google Scholar 

  15. Elder, J. H. & Alexander, S. Proc. natn. Acad. Sci. U.S.A. 79, 4540–4544 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Schnitzer, J. & Schachner, M. J. Neuroimmun. 1, 429–456 (1981).

    Article  CAS  Google Scholar 

  17. Schnitzer, J., Franke, W. W. & Schachner, M. J. Cell Biol. 90, 447–475 (1981).

    Article  Google Scholar 

  18. Sommer, I. & Schachner, M. Devl Biol. 83, 311–327 (1981).

    Article  CAS  Google Scholar 

  19. Schachner, M., Kim, S. U. & Zehnle, R. Devl. Biol. 83, 328–338 (1981).

    Article  CAS  Google Scholar 

  20. Sommer, I. & Schachner, M. Neurosci. Lett. 29, 183–188 (1982).

    Article  CAS  Google Scholar 

  21. Schachner, M., Schoonmaker, G. & Hynes, R. O. Brain Res. 158, 149–158 (1978).

    Article  CAS  Google Scholar 

  22. Itoyama, Y. et al. Ann. Neurol. 7, 167–177 (1980).

    Article  CAS  Google Scholar 

  23. Sadoul, R., Hirn, M., Deagostini-Bazin, H., Rougon, G. & Goridis, C. Nature 304, 347–349 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Hoffman, S. & Edelman, G. M. Proc. natn. Acad. Sci. U.S.A. 80, 5762–5766 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Reutter, W., Köttgen, E., Bauer, C. & Gehrock, W., in Sialic acids; Chemistry, Metabolism and Function (ed. Schauer, R.) 263–305 (Springer, Berlin, 1982).

    Book  Google Scholar 

  26. Latov, N. et al. Proc. natn. Acad. Sci. U.S.A. 75, 7139–7142 (1981).

    Article  ADS  Google Scholar 

  27. Steck, A. J., Murray, N., Vandevelde, M. & Zurbriggen, A. J. Neuroimmunology 5, 145–156 (1983).

    Article  CAS  Google Scholar 

  28. Stefansson, K. et al. Acta neuropath. (Berl.) 59, 255–261 (1983).

    Article  CAS  Google Scholar 

  29. Palfree, R. G. E. & Elliot, B. E. J. immun. Meth. 52, 395–408 (1982).

    Article  CAS  Google Scholar 

  30. Holmes, E. W. & O'Brien, J. S. Analyt. Biochem. 93, 167–170 (1979).

    Article  CAS  Google Scholar 

  31. Neuhoff, V., Phillipp, K., Zimmer, H. G. & Mesecke, S. Hoppe-Seyler's Z. physiol. Chem. 360, 1657–1670 (1979).

    Article  CAS  Google Scholar 

  32. Hirs, C. H. N. Meth. Enzym. 11, 411–413 (1967).

    Article  CAS  Google Scholar 

  33. Gennarini, G., Hirn, M., Deagostini-Bazin, H. & Goridis, C. Eur. J. Biochem. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, J., Mailhammer, R., Wernecke, H. et al. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311, 153–155 (1984). https://doi.org/10.1038/311153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing