Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1

Abstract

Activated T lymphocytes differentiate into effector cells tailored to meet disparate challenges to host integrity1. For example, type 1 and type 2 helper (TH1 and TH2) cells secrete cytokines that enhance cell-mediated and humoral immunity, respectively. The chemokine monocyte chemoattractant protein-1 (MCP-1) can stimulate interleukin-4 production2 and its overexpression is associated with defects in cell-mediated immunity3, indicating that it might be involved in TH2 polarization. Here we show that MCP-1-deficient mice are unable to mount TH2 responses. Lymph node cells from immunized MCP-1-/- mice synthesize extremely low levels of interleukin-4, interleukin-5 and interleukin-10, but normal amounts of interferon-γ and interleukin-2. Consequently, these mice do not accomplish the immunoglobulin subclass switch that is characteristic of TH2 responses and are resistant to Leishmania major. These effects are direct rather than due to abnormal cell migration, because the trafficking of naive T cells is undisturbed in MCP-1-/- mice despite the presence of MCP-1-expressing cells in secondary lymphoid organs of wild-type mice. Thus, MCP-1 influences both innate immunity, through effects on monocytes, and adaptive immunity, through control of T helper cell polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of MCP-1 on cytokine synthesis.
Figure 2: Effect of MCP-1 on IgG subclass concentrations.
Figure 3: Resistance of MCP-1-/- mice to Leishmania major.
Figure 4: Effect of MCP-1 on T-lymphocyte trafficking.
Figure 5: Expression of MCP-1 in spleen and lymph nodes.

Similar content being viewed by others

References

  1. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Karpus, W. J. et al. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J. Immunol. 158, 4129–4136 (1997).

    CAS  PubMed  Google Scholar 

  3. Rutledge, B. J. et al. High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J. Immunol. 155, 4838–4843 (1995).

    CAS  PubMed  Google Scholar 

  4. Matsushima, K., Larsen, C. G., DuBois, G. C. & Oppenheim, J. J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 169, 1485–1490 (1989).

    CAS  Google Scholar 

  5. Yoshimura, T. et al. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med. 169, 1449–1459 (1989).

    Article  CAS  Google Scholar 

  6. Carr, M. W., Roth, S. J., Luther, E., Rose, S. S. & Springer, T. A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 91, 3652–3656 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Allavena, P. et al. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur. J. Immunol. 24, 3233–3236 (1994).

    Article  CAS  Google Scholar 

  8. Maghazachi, A. A., al-Aoukaty, A. & Schall, T. J. C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J. Immunol. 153, 4969–4977 (1994).

    CAS  PubMed  Google Scholar 

  9. Fuentes, M. E. et al. Controlled recruitment of monocytes/macrophages to specific organs through transgenic expression of MCP-1. J. Immunol. 155, 5769–5776 (1995).

    CAS  PubMed  Google Scholar 

  10. Nakamura, K., Williams, I. R. & Kupper, T. S. Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J. Invest. Dermatol. 105, 635–643 (1995).

    Article  CAS  Google Scholar 

  11. Gunn, M. D., Nelken, N. A., Liao, X. & Williams, L. T. Monocyte chemoattractant protein-1 is sufficient for the chemotaxis of monocytes and lymphocytes in transgenic mice but requires an additional stimulus for inflammatory activation. J. Immunol. 158, 376–383 (1997).

    CAS  PubMed  Google Scholar 

  12. Lu, B. et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–608 (1998).

    Article  CAS  Google Scholar 

  13. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  Google Scholar 

  14. Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B: a critical role for chemokines in monocyte recruitment and foam cell formation. J. Clin. Invest. 103, 773–778 (1999).

    Article  CAS  Google Scholar 

  15. Gonzalo, J. A. et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness. J. Exp. Med. 188, 157–167 (1998).

    Article  CAS  Google Scholar 

  16. Loetscher, P., Seitz, M., Baggiolini, M. & Moser, B. Interleukin-2 regulates CC chemokine receptor expression and chemotactic responsiveness in T lymphocytes. J. Exp. Med. 184, 569–577 (1996).

    Article  CAS  Google Scholar 

  17. Chensue, S. W. et al. Monocyte chemotactic protein expression during schistosome egg granuloma formation. Sequence of production, localization, contribution, and regulation. Am. J. Pathol. 146, 130–138 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Karpus, W. J., Kennedy, K. J., Kunkel, S. L. & Lukacs, N. W. Monocyte chemotactic protein 1 regulates oral tolerance induction by inhibition of T helper cell 1-related cytokines. J. Exp. Med. 187, 733–741 (1998).

    Article  CAS  Google Scholar 

  19. Sallusto, F., Lanzavecchia, A. & Mackay, C. R. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol. Today 19, 568–574 (1998).

    Article  CAS  Google Scholar 

  20. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    Article  CAS  Google Scholar 

  21. Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  Google Scholar 

  22. Warmington, K. S. Effect of C-C chemokine receptor 2 (CCR2) knockout on type-2 (schistosomal antigen-elicited) pulmonary granuloma formation: analysis of cellular recruitment and cytokine responses. Am. J. Pathol. 154, 1407–1416 (1999).

    Article  CAS  Google Scholar 

  23. Schecter, A. D. et al. Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J. Biol. Chem. 272, 28568–28573 (1997).

    Article  CAS  Google Scholar 

  24. Nibbs, R. J. B., Wylie, S. M., Pragnell, I. B. & Graham, G. J. Cloning and characterization of a novel murine beta chemokine receptor, D6. Comparison to three other related macrophage inflammatory protein-1alpha receptors, CCR-1, CCR-3, and CCR-5. J. Biol. Chem. 272, 12495–12504 (1997).

    Article  CAS  Google Scholar 

  25. Power, C. A. et al. Molecular cloning and functional expression of a novel CC chemokine receptor cDNA from a human basophilic cell line. J. Biol. Chem. 270, 19495–19500 (1995).

    Article  CAS  Google Scholar 

  26. Imai, T. et al. The T cell-directed CC chemokine TARC is a highly specific biological ligand for CC chemokine receptor 4. J. Biol. chem. 272, 15036–15042 (1997).

    Article  CAS  Google Scholar 

  27. Kelder, W., McArthur, J. C., Nance-Sproson, T., McClernon, D. & Griffin, D. E. Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann. Neurol. 44, 831–835 (1998).

    Article  CAS  Google Scholar 

  28. Conant, K. et al. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc. Natl. Acad. Sci. USA 95, 3117–3121 (1998).

    Article  ADS  CAS  Google Scholar 

  29. Rollins, B. J., Morrison, E. D. & Stiles, C. D. Cloning and expression of JE, a gene inducible by platelet-derived growth factor and whose product has cytokine-like properties. Proc. Natl Acad. Sci. USA 85, 3738–3742 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Gunn, M. D. et al. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl Acad. Sci. USA 95, 258–263 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Abbas, C. Gerard, R. Ransohoff and E. Reinherz for helpful comments and advice; P. Marks, L. Clayton and C. Daly for assistance; A. Satoskar and J. David for Leishmania major; and the staff of the Animal Resource Facility at Dana-Farber Cancer Institute for their humane animal care. Supported by NIH grants to B.J.R., who is also a Scholar of the Leukemia Society of America and is supported by the Novartis/Dana-Farber Drug Discovery Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barrett J. Rollins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, L., Tseng, S., Horner, R. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000). https://doi.org/10.1038/35006097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing